BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 19346980)

  • 21. Impact of acute dynamic exercise and arterial shear rate modification on radial artery low-flow mediated constriction in young men.
    Alali MH; Lucas RAI; Junejo RT; Fisher JP
    Eur J Appl Physiol; 2022 Aug; 122(8):1885-1895. PubMed ID: 35551453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Limb-specific differences in flow-mediated dilation: the role of shear rate.
    Nishiyama SK; Walter Wray D; Berkstresser K; Ramaswamy M; Richardson RS
    J Appl Physiol (1985); 2007 Sep; 103(3):843-51. PubMed ID: 17556495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of aging on conduit artery retrograde and oscillatory shear at rest and during exercise: role of nitric oxide.
    Padilla J; Simmons GH; Fadel PJ; Laughlin MH; Joyner MJ; Casey DP
    Hypertension; 2011 Mar; 57(3):484-9. PubMed ID: 21263118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The impact of baseline artery diameter on flow-mediated vasodilation: a comparison of brachial and radial artery responses to matched levels of shear stress.
    Jazuli F; Pyke KE
    Am J Physiol Heart Circ Physiol; 2011 Oct; 301(4):H1667-77. PubMed ID: 21784988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flow-mediated dilation in the inactive limb following acute hypoxic exercise.
    Katayama K; Yamashita S; Iwamoto E; Ishida K
    Clin Physiol Funct Imaging; 2016 Jan; 36(1):60-9. PubMed ID: 25257848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Opposing effects of shear-mediated dilation and myogenic constriction on artery diameter in response to handgrip exercise in humans.
    Atkinson CL; Carter HH; Naylor LH; Dawson EA; Marusic P; Hering D; Schlaich MP; Thijssen DH; Green DJ
    J Appl Physiol (1985); 2015 Oct; 119(8):858-64. PubMed ID: 26294751
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sympathetic vasomotor control does not explain the change in femoral artery shear rate pattern during arm-crank exercise.
    Thijssen DH; Green DJ; Steendijk S; Hopman MT
    Am J Physiol Heart Circ Physiol; 2009 Jan; 296(1):H180-5. PubMed ID: 19028796
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of SR manipulation on conduit artery dilation in humans.
    Carter HH; Dawson EA; Birk GK; Spence AL; Naylor LH; Cable NT; Thijssen DH; Green DJ
    Hypertension; 2013 Jan; 61(1):143-50. PubMed ID: 23150517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acute psychological and physical stress transiently enhances brachial artery flow-mediated dilation stimulated by exercise-induced increases in shear stress.
    Szijgyarto IC; Poitras VJ; Gurd BJ; Pyke KE
    Appl Physiol Nutr Metab; 2014 Aug; 39(8):927-36. PubMed ID: 24921439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differences in brachial and femoral artery responses to prolonged sitting.
    Thosar SS; Bielko SL; Wiggins CC; Wallace JP
    Cardiovasc Ultrasound; 2014 Dec; 12():50. PubMed ID: 25512175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of Age and Aerobic Exercise Training on Conduit Artery Wall Thickness: Role of the Shear Pattern.
    Tanahashi K; Kosaki K; Sawano Y; Yoshikawa T; Tagawa K; Kumagai H; Akazawa N; Maeda S
    J Vasc Res; 2017; 54(5):272-279. PubMed ID: 28910811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adaptation of external counterpulsation based on individual shear rate therapy improves endothelial function and claudication distance in peripheral artery disease.
    Buschmann EE; Brix M; Li L; Doreen J; Zietzer A; Li M; Buschmann I; Hillmeister P
    Vasa; 2016; 45(4):317-24. PubMed ID: 27428501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of sinusoidal leg cycling exercise period on brachial artery blood flow dynamics in humans.
    Miura K; Kashima H; Oue A; Kondo A; Watanabe S; Endo MY; Fukuba Y
    J Physiol Sci; 2020 Apr; 70(1):23. PubMed ID: 32312251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brachial artery blood flow dynamics during sinusoidal leg cycling exercise in humans.
    Fukuba Y; Endo MY; Kondo A; Kikugawa Y; Miura K; Kashima H; Fujimoto M; Hayashi N; Fukuoka Y; Koga S
    Physiol Rep; 2017 Oct; 5(19):. PubMed ID: 28989117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of shear rate modulation on vascular function in humans.
    Tinken TM; Thijssen DH; Hopkins N; Black MA; Dawson EA; Minson CT; Newcomer SC; Laughlin MH; Cable NT; Green DJ
    Hypertension; 2009 Aug; 54(2):278-85. PubMed ID: 19546374
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of controlling shear rate on flow-mediated dilation responses in the brachial artery of humans.
    Pyke KE; Dwyer EM; Tschakovsky ME
    J Appl Physiol (1985); 2004 Aug; 97(2):499-508. PubMed ID: 15064302
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterogeneity in conduit artery function in humans: impact of arterial size.
    Thijssen DH; Dawson EA; Black MA; Hopman MT; Cable NT; Green DJ
    Am J Physiol Heart Circ Physiol; 2008 Nov; 295(5):H1927-34. PubMed ID: 18775852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. α-adrenergic vasoconstriction contributes to the age-related increase in conduit artery retrograde and oscillatory shear.
    Casey DP; Padilla J; Joyner MJ
    Hypertension; 2012 Oct; 60(4):1016-22. PubMed ID: 22949528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differences in exercising limb blood flow variability between cardiac and muscle contraction cycle related analysis during dynamic knee extensor.
    Osada T; Rådegran G
    J Sports Med Phys Fitness; 2006 Dec; 46(4):590-7. PubMed ID: 17119525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The acute effect of resistance exercise on limb blood flow.
    Thomas KN; Kissling LS; Gibbons TD; Akerman AP; van Rij AM; Cotter JD
    Exp Physiol; 2020 Dec; 105(12):2099-2109. PubMed ID: 33058304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.