These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 19347240)
1. Bioavailability and bioaccessibility of arsenic in a soil amended with drinking-water treatment residuals. Nagar R; Sarkar D; Makris KC; Datta R; Sylvia VL Arch Environ Contam Toxicol; 2009 Nov; 57(4):755-66. PubMed ID: 19347240 [TBL] [Abstract][Full Text] [Related]
2. Arsenic bioaccessibility in a soil amended with drinking-water treatment residuals in the presence of phosphorus fertilizer. Sarkar D; Quazi S; Makris KC; Datta R; Khairom A Arch Environ Contam Toxicol; 2007 Oct; 53(3):329-36. PubMed ID: 17657461 [TBL] [Abstract][Full Text] [Related]
3. Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Juhasz AL; Smith E; Weber J; Rees M; Rofe A; Kuchel T; Sansom L; Naidu R Chemosphere; 2007 Oct; 69(6):961-6. PubMed ID: 17585998 [TBL] [Abstract][Full Text] [Related]
4. Relative oral bioavailability of arsenic from contaminated soils measured in the cynomolgus monkey. Roberts SM; Munson JW; Lowney YW; Ruby MV Toxicol Sci; 2007 Jan; 95(1):281-8. PubMed ID: 17005634 [TBL] [Abstract][Full Text] [Related]
5. Lability of drinking water treatment residuals (WTR) immobilized phosphorus: aging and pH effects. Agyin-Birikorang S; O'Connor GA J Environ Qual; 2007; 36(4):1076-85. PubMed ID: 17526887 [TBL] [Abstract][Full Text] [Related]
6. Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo relative arsenic bioavailability in contaminated soils. Juhasz AL; Weber J; Smith E; Naidu R; Rees M; Rofe A; Kuchel T; Sansom L Environ Sci Technol; 2009 Dec; 43(24):9487-94. PubMed ID: 20000545 [TBL] [Abstract][Full Text] [Related]
7. Arsenic immobilization in soils amended with drinking-water treatment residuals. Sarkar D; Makris KC; Vandanapu V; Datta R Environ Pollut; 2007 Mar; 146(2):414-9. PubMed ID: 16939697 [TBL] [Abstract][Full Text] [Related]
8. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction. Girouard E; Zagury GJ Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134 [TBL] [Abstract][Full Text] [Related]
9. Aging effects on reactivity of an aluminum-based drinking-water treatment residual as a soil amendment. Agyin-Birikorang S; O'Connor GA Sci Total Environ; 2009 Jan; 407(2):826-34. PubMed ID: 18976798 [TBL] [Abstract][Full Text] [Related]
10. Application of an in vivo swine model for the determination of arsenic bioavailability in contaminated vegetables. Juhasz AL; Smith E; Weber J; Rees M; Rofe A; Kuchel T; Sansom L; Naidu R Chemosphere; 2008 May; 71(10):1963-9. PubMed ID: 18262220 [TBL] [Abstract][Full Text] [Related]
11. Effect of phosphate amendment on relative bioavailability and bioaccessibility of lead and arsenic in contaminated soils. Li SW; Liu X; Sun HJ; Li MY; Zhao D; Luo J; Li HB; Ma LQ J Hazard Mater; 2017 Oct; 339():256-263. PubMed ID: 28654790 [TBL] [Abstract][Full Text] [Related]
12. Arsenic biogeochemistry and human health risk assessment in organo-arsenical pesticide-applied acidic and alkaline soils: an incubation study. Datta R; Sarkar D; Sharma S; Sand K Sci Total Environ; 2006 Dec; 372(1):39-48. PubMed ID: 16973204 [TBL] [Abstract][Full Text] [Related]
13. Effect of soil properties on arsenic fractionation and bioaccessibility in cattle and sheep dipping vat sites. Sarkar D; Makris KC; Parra-Noonan MT; Datta R Environ Int; 2007 Feb; 33(2):164-9. PubMed ID: 17034861 [TBL] [Abstract][Full Text] [Related]
14. Controlling the fate of roxarsone and inorganic arsenic in poultry litter. Makris KC; Salazar J; Quazi S; Andra SS; Sarkar D; Bach SB; Datta R J Environ Qual; 2008; 37(3):963-71. PubMed ID: 18453419 [TBL] [Abstract][Full Text] [Related]
15. Validation of the predictive capabilities of the Sbrc-G in vitro assay for estimating arsenic relative bioavailability in contaminated soils. Juhasz AL; Herde P; Herde C; Boland J; Smith E Environ Sci Technol; 2014 Nov; 48(21):12962-9. PubMed ID: 25310703 [TBL] [Abstract][Full Text] [Related]
16. Predicting oral relative bioavailability of arsenic in soil from in vitro bioaccessibility. Diamond GL; Bradham KD; Brattin WJ; Burgess M; Griffin S; Hawkins CA; Juhasz AL; Klotzbach JM; Nelson C; Lowney YW; Scheckel KG; Thomas DJ J Toxicol Environ Health A; 2016; 79(4):165-73. PubMed ID: 27029599 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of two in vitro protocols for determination of mercury bioaccessibility: influence of mercury fractionation and soil properties. Welfringer B; Zagury GJ J Environ Qual; 2009; 38(6):2237-44. PubMed ID: 19875779 [TBL] [Abstract][Full Text] [Related]
18. Inclusion of soil arsenic bioaccessibility in ecological risk assessment and comparison with biological effects. Saunders JR; Knopper LD; Koch I; Reimer KJ Sci Total Environ; 2011 Dec; 412-413():132-7. PubMed ID: 22078367 [TBL] [Abstract][Full Text] [Related]
20. In vitro physiologically based extraction test (PBET) and bioaccessibility of arsenic and lead from various mine waste materials. Bruce S; Noller B; Matanitobua V; Ng J J Toxicol Environ Health A; 2007 Oct; 70(19):1700-11. PubMed ID: 17763089 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]