BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19347240)

  • 1. Bioavailability and bioaccessibility of arsenic in a soil amended with drinking-water treatment residuals.
    Nagar R; Sarkar D; Makris KC; Datta R; Sylvia VL
    Arch Environ Contam Toxicol; 2009 Nov; 57(4):755-66. PubMed ID: 19347240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic bioaccessibility in a soil amended with drinking-water treatment residuals in the presence of phosphorus fertilizer.
    Sarkar D; Quazi S; Makris KC; Datta R; Khairom A
    Arch Environ Contam Toxicol; 2007 Oct; 53(3):329-36. PubMed ID: 17657461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils.
    Juhasz AL; Smith E; Weber J; Rees M; Rofe A; Kuchel T; Sansom L; Naidu R
    Chemosphere; 2007 Oct; 69(6):961-6. PubMed ID: 17585998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative oral bioavailability of arsenic from contaminated soils measured in the cynomolgus monkey.
    Roberts SM; Munson JW; Lowney YW; Ruby MV
    Toxicol Sci; 2007 Jan; 95(1):281-8. PubMed ID: 17005634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lability of drinking water treatment residuals (WTR) immobilized phosphorus: aging and pH effects.
    Agyin-Birikorang S; O'Connor GA
    J Environ Qual; 2007; 36(4):1076-85. PubMed ID: 17526887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo relative arsenic bioavailability in contaminated soils.
    Juhasz AL; Weber J; Smith E; Naidu R; Rees M; Rofe A; Kuchel T; Sansom L
    Environ Sci Technol; 2009 Dec; 43(24):9487-94. PubMed ID: 20000545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic immobilization in soils amended with drinking-water treatment residuals.
    Sarkar D; Makris KC; Vandanapu V; Datta R
    Environ Pollut; 2007 Mar; 146(2):414-9. PubMed ID: 16939697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction.
    Girouard E; Zagury GJ
    Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging effects on reactivity of an aluminum-based drinking-water treatment residual as a soil amendment.
    Agyin-Birikorang S; O'Connor GA
    Sci Total Environ; 2009 Jan; 407(2):826-34. PubMed ID: 18976798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of an in vivo swine model for the determination of arsenic bioavailability in contaminated vegetables.
    Juhasz AL; Smith E; Weber J; Rees M; Rofe A; Kuchel T; Sansom L; Naidu R
    Chemosphere; 2008 May; 71(10):1963-9. PubMed ID: 18262220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of phosphate amendment on relative bioavailability and bioaccessibility of lead and arsenic in contaminated soils.
    Li SW; Liu X; Sun HJ; Li MY; Zhao D; Luo J; Li HB; Ma LQ
    J Hazard Mater; 2017 Oct; 339():256-263. PubMed ID: 28654790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic biogeochemistry and human health risk assessment in organo-arsenical pesticide-applied acidic and alkaline soils: an incubation study.
    Datta R; Sarkar D; Sharma S; Sand K
    Sci Total Environ; 2006 Dec; 372(1):39-48. PubMed ID: 16973204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of soil properties on arsenic fractionation and bioaccessibility in cattle and sheep dipping vat sites.
    Sarkar D; Makris KC; Parra-Noonan MT; Datta R
    Environ Int; 2007 Feb; 33(2):164-9. PubMed ID: 17034861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the fate of roxarsone and inorganic arsenic in poultry litter.
    Makris KC; Salazar J; Quazi S; Andra SS; Sarkar D; Bach SB; Datta R
    J Environ Qual; 2008; 37(3):963-71. PubMed ID: 18453419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of the predictive capabilities of the Sbrc-G in vitro assay for estimating arsenic relative bioavailability in contaminated soils.
    Juhasz AL; Herde P; Herde C; Boland J; Smith E
    Environ Sci Technol; 2014 Nov; 48(21):12962-9. PubMed ID: 25310703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting oral relative bioavailability of arsenic in soil from in vitro bioaccessibility.
    Diamond GL; Bradham KD; Brattin WJ; Burgess M; Griffin S; Hawkins CA; Juhasz AL; Klotzbach JM; Nelson C; Lowney YW; Scheckel KG; Thomas DJ
    J Toxicol Environ Health A; 2016; 79(4):165-73. PubMed ID: 27029599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of two in vitro protocols for determination of mercury bioaccessibility: influence of mercury fractionation and soil properties.
    Welfringer B; Zagury GJ
    J Environ Qual; 2009; 38(6):2237-44. PubMed ID: 19875779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inclusion of soil arsenic bioaccessibility in ecological risk assessment and comparison with biological effects.
    Saunders JR; Knopper LD; Koch I; Reimer KJ
    Sci Total Environ; 2011 Dec; 412-413():132-7. PubMed ID: 22078367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Issues in setting health-based cleanup levels for arsenic in soil.
    Valberg PA; Beck BD; Bowers TS; Keating JL; Bergstrom PD; Boardman PD
    Regul Toxicol Pharmacol; 1997 Oct; 26(2):219-29. PubMed ID: 9356285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro physiologically based extraction test (PBET) and bioaccessibility of arsenic and lead from various mine waste materials.
    Bruce S; Noller B; Matanitobua V; Ng J
    J Toxicol Environ Health A; 2007 Oct; 70(19):1700-11. PubMed ID: 17763089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.