BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 19347309)

  • 1. Macrophage activation: classical versus alternative.
    Classen A; Lloberas J; Celada A
    Methods Mol Biol; 2009; 531():29-43. PubMed ID: 19347309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing classical and alternative macrophage activation in macrophage/neutrophil-specific IL-4 receptor-alpha-deficient mice.
    Brombacher F; Arendse B; Peterson R; Hölscher A; Hölscher C
    Methods Mol Biol; 2009; 531():225-52. PubMed ID: 19347321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arginine and macrophage activation.
    Comalada M; Yeramian A; Modolell M; Lloberas J; Celada A
    Methods Mol Biol; 2012; 844():223-35. PubMed ID: 22262446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines.
    Modolell M; Corraliza IM; Link F; Soler G; Eichmann K
    Eur J Immunol; 1995 Apr; 25(4):1101-4. PubMed ID: 7537672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells.
    Munder M; Eichmann K; Morán JM; Centeno F; Soler G; Modolell M
    J Immunol; 1999 Oct; 163(7):3771-7. PubMed ID: 10490974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IL-13 pre-treatment of murine peritoneal macrophages increases their anti-Toxoplasma gondii activity induced by lipopolysaccharides.
    Authier H; Cassaing S; Bans V; Batigne P; Bessières MH; Pipy B
    Int J Parasitol; 2008 Mar; 38(3-4):341-52. PubMed ID: 17923133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary conservation of alternative activation of macrophages: structural and functional characterization of arginase 1 and 2 in carp (Cyprinus carpio L.).
    Joerink M; Savelkoul HF; Wiegertjes GF
    Mol Immunol; 2006 Mar; 43(8):1116-28. PubMed ID: 16257446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable chitosan particles induce chemokine release and negligible arginase-1 activity compared to IL-4 in murine bone marrow-derived macrophages.
    Guzmán-Morales J; Ariganello MB; Hammami I; Thibault M; Jolicoeur M; Hoemann CD
    Biochem Biophys Res Commun; 2011 Feb; 405(4):538-44. PubMed ID: 21256824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation and characterization of murine alternatively activated macrophages.
    Weisser SB; McLarren KW; Kuroda E; Sly LM
    Methods Mol Biol; 2013; 946():225-39. PubMed ID: 23179835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced nitric oxide production and iNOS mRNA expression in IFN-gamma-stimulated chicken macrophages transfected with iNOS siRNAs.
    Cheeseman JH; Lillehoj HS; Lamont SJ
    Vet Immunol Immunopathol; 2008 Oct; 125(3-4):375-80. PubMed ID: 18586326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional phenotype of macrophages depends on assay procedures.
    Chiang CS; Chen FH; Hong JH; Jiang PS; Huang HL; Wang CC; McBride WH
    Int Immunol; 2008 Feb; 20(2):215-22. PubMed ID: 18096562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opposite effects of galectin-1 on alternative metabolic pathways of L-arginine in resident, inflammatory, and activated macrophages.
    Correa SG; Sotomayor CE; Aoki MP; Maldonado CA; Rabinovich GA
    Glycobiology; 2003 Feb; 13(2):119-28. PubMed ID: 12626408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macrophages require distinct arginine catabolism and transport systems for proliferation and for activation.
    Yeramian A; Martin L; Arpa L; Bertran J; Soler C; McLeod C; Modolell M; Palacín M; Lloberas J; Celada A
    Eur J Immunol; 2006 Jun; 36(6):1516-26. PubMed ID: 16703566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apoptotic cells induce arginase II in macrophages, thereby attenuating NO production.
    Johann AM; Barra V; Kuhn AM; Weigert A; von Knethen A; Brüne B
    FASEB J; 2007 Sep; 21(11):2704-12. PubMed ID: 17456784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Azithromycin alters macrophage phenotype.
    Murphy BS; Sundareshan V; Cory TJ; Hayes D; Anstead MI; Feola DJ
    J Antimicrob Chemother; 2008 Mar; 61(3):554-60. PubMed ID: 18230686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrophage arginine metabolism to ornithine/urea or nitric oxide/citrulline: a life or death issue.
    Mills CD
    Crit Rev Immunol; 2001; 21(5):399-425. PubMed ID: 11942557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginine metabolism in tumor-associated macrophages in cutaneous malignant melanoma: evidence from human and experimental tumors.
    Massi D; Marconi C; Franchi A; Bianchini F; Paglierani M; Ketabchi S; Miracco C; Santucci M; Calorini L
    Hum Pathol; 2007 Oct; 38(10):1516-25. PubMed ID: 17640716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of Toll-like receptors 2 and 4 on reactive oxygen species and nitric oxide production by macrophage cells stimulated with root canal pathogens.
    Marcato LG; Ferlini AP; Bonfim RC; Ramos-Jorge ML; Ropert C; Afonso LF; Vieira LQ; Sobrinho AP
    Oral Microbiol Immunol; 2008 Oct; 23(5):353-9. PubMed ID: 18793356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative activation of ruminant macrophages by Fasciola hepatica.
    Flynn RJ; Irwin JA; Olivier M; Sekiya M; Dalton JP; Mulcahy G
    Vet Immunol Immunopathol; 2007 Nov; 120(1-2):31-40. PubMed ID: 17719651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneity of macrophage activation in fish.
    Forlenza M; Fink IR; Raes G; Wiegertjes GF
    Dev Comp Immunol; 2011 Dec; 35(12):1246-55. PubMed ID: 21414343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.