These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19347644)

  • 21. Agrobacterium tumefaciens-mediated transformation of yeast.
    Piers KL; Heath JD; Liang X; Stephens KM; Nester EW
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1613-8. PubMed ID: 8643679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium.
    Khanna HK; Daggard GE
    Plant Cell Rep; 2003 Jan; 21(5):429-36. PubMed ID: 12789445
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High frequency Agrobacterium tumefaciens-mediated plant transformation induced by ammonium nitrate.
    Boyko A; Matsuoka A; Kovalchuk I
    Plant Cell Rep; 2009 May; 28(5):737-57. PubMed ID: 19221758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Agrobacterium tumefaciens-mediated transformation of chickpea (Cicer arietinum L.): gene integration, expression and inheritance.
    Polowick PL; Baliski DS; Mahon JD
    Plant Cell Rep; 2004 Dec; 23(7):485-91. PubMed ID: 15503035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transgene stacking and marker elimination in transgenic rice by sequential Agrobacterium-mediated co-transformation with the same selectable marker gene.
    Ramana Rao MV; Parameswari C; Sripriya R; Veluthambi K
    Plant Cell Rep; 2011 Jul; 30(7):1241-52. PubMed ID: 21327387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Agrobacterium-Mediated Transformation of Solanum tuberosum L., Potato.
    Bruce MA; Shoup Rupp JL
    Methods Mol Biol; 2019; 1864():203-223. PubMed ID: 30415339
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptional interference in transgenic plants.
    Ingelbrecht I; Breyne P; Vancompernolle K; Jacobs A; Van Montagu M; Depicker A
    Gene; 1991 Dec; 109(2):239-42. PubMed ID: 1662656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of efficient plant regeneration and transformation system for impatiens using Agrobacterium tumefaciens and multiple bud cultures as explants.
    Dan Y; Baxter A; Zhang S; Pantazis CJ; Veilleux RE
    BMC Plant Biol; 2010 Aug; 10():165. PubMed ID: 20696066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving plant transformation using Agrobacterium tumefaciens.
    Ribeiro Neto LV; Oliveira AP; Lourenço MV; Bertoni BW; França SC; Rosa-Santos TM; Zingaretti SM
    Genet Mol Res; 2015 Jun; 14(2):6695-8. PubMed ID: 26125878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops.
    Singh RK; Prasad M
    Protoplasma; 2016 May; 253(3):691-707. PubMed ID: 26660352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced production of single copy backbone-free transgenic plants in multiple crop species using binary vectors with a pRi replication origin in Agrobacterium tumefaciens.
    Ye X; Williams EJ; Shen J; Johnson S; Lowe B; Radke S; Strickland S; Esser JA; Petersen MW; Gilbertson LA
    Transgenic Res; 2011 Aug; 20(4):773-86. PubMed ID: 21042934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. pSiM24 is a novel versatile gene expression vector for transient assays as well as stable expression of foreign genes in plants.
    Sahoo DK; Dey N; Maiti IB
    PLoS One; 2014; 9(6):e98988. PubMed ID: 24897541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of marker-free transgenic lettuce resistant to Mirafiori lettuce big-vein virus.
    Kawazu Y; Fujiyama R; Imanishi S; Fukuoka H; Yamaguchi H; Matsumoto S
    Transgenic Res; 2016 Oct; 25(5):711-9. PubMed ID: 27055463
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel inducible/repressible gene expression systems.
    Gatz C
    Methods Cell Biol; 1995; 50():411-24. PubMed ID: 8531813
    [No Abstract]   [Full Text] [Related]  

  • 35. High frequency of single-copy T-DNA transformants produced after floral dip in CRE-expressing Arabidopsis plants.
    De Paepe A; De Buck S; Nolf J; Depicker A
    Methods Mol Biol; 2012; 847():317-33. PubMed ID: 22351019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Screening of plant cell culture collection for efficient host species for Agrobacterium-mediated transient expression.
    Sindarovska YR; Golovach IS; Belokurova VB; Gerasymenko IM; Sheludko YV; Kuchuk NV
    Tsitol Genet; 2014; 48(4):9-18. PubMed ID: 25181853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Novel Phenolic Compound, Chloroxynil, Improves Agrobacterium-Mediated Transient Transformation in Lotus japonicus.
    Kimura M; Cutler S; Isobe S
    PLoS One; 2015; 10(7):e0131626. PubMed ID: 26176780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Unified Agrobacterium-Mediated Transformation Protocol for Alfalfa (Medicago sativa L.) and Medicago truncatula.
    Jiang Q; Fu C; Wang ZY
    Methods Mol Biol; 2019; 1864():153-163. PubMed ID: 30415335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Backbone-free transformation of barrel medic (Medicago truncatula) with a Medicago-derived transfer DNA.
    Confalonieri M; Borghetti R; Macovei A; Testoni C; Carbonera D; Fevereiro MP; Rommens C; Swords K; Piano E; Balestrazzi A
    Plant Cell Rep; 2010 Sep; 29(9):1013-21. PubMed ID: 20571798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inducible Expression of Agrobacterium Virulence Gene VirE2 for Stringent Regulation of T-DNA Transfer in Plant Transient Expression Systems.
    Denkovskienė E; Paškevičius Š; Werner S; Gleba Y; Ražanskienė A
    Mol Plant Microbe Interact; 2015 Nov; 28(11):1247-55. PubMed ID: 26292850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.