These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19347841)

  • 1. Role of electrospun fibre diameter and corresponding specific surface area (SSA) on cell attachment.
    Chen M; Patra PK; Lovett ML; Kaplan DL; Bhowmick S
    J Tissue Eng Regen Med; 2009 Jun; 3(4):269-79. PubMed ID: 19347841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of pore size on cell adhesion in collagen-GAG scaffolds.
    O'Brien FJ; Harley BA; Yannas IV; Gibson LJ
    Biomaterials; 2005 Feb; 26(4):433-41. PubMed ID: 15275817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of neural stem cells on electrospun poly(epsilon-caprolactone) submicron scaffolds: evaluating their potential in neural tissue engineering.
    Nisbet DR; Yu LM; Zahir T; Forsythe JS; Shoichet MS
    J Biomater Sci Polym Ed; 2008; 19(5):623-34. PubMed ID: 18419941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration.
    Pham QP; Sharma U; Mikos AG
    Biomacromolecules; 2006 Oct; 7(10):2796-805. PubMed ID: 17025355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies.
    Baker SC; Atkin N; Gunning PA; Granville N; Wilson K; Wilson D; Southgate J
    Biomaterials; 2006 Jun; 27(16):3136-46. PubMed ID: 16473404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds.
    Chen M; Patra PK; Warner SB; Bhowmick S
    Tissue Eng; 2007 Mar; 13(3):579-87. PubMed ID: 17518604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterned melt electrospun substrates for tissue engineering.
    Dalton PD; Joergensen NT; Groll J; Moeller M
    Biomed Mater; 2008 Sep; 3(3):034109. PubMed ID: 18689917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailored laminin-332 alpha3 sequence is tethered through an enzymatic linker to a collagen scaffold to promote cellular adhesion.
    Damodaran G; Collighan R; Griffin M; Navsaria H; Pandit A
    Acta Biomater; 2009 Sep; 5(7):2441-50. PubMed ID: 19364681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of electrospun scaffold stiffness via coaxial core diameter.
    Drexler JW; Powell HM
    Acta Biomater; 2011 Mar; 7(3):1133-9. PubMed ID: 20977951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel nanofibrous spiral scaffolds for neural tissue engineering.
    Valmikinathan CM; Tian J; Wang J; Yu X
    J Neural Eng; 2008 Dec; 5(4):422-32. PubMed ID: 18971515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration.
    Vaquette C; Cooper-White JJ
    Acta Biomater; 2011 Jun; 7(6):2544-57. PubMed ID: 21371575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled vacuum seeding as a means of generating uniform cellular distribution in electrospun polycaprolactone (PCL) scaffolds.
    Chen M; Michaud H; Bhowmick S
    J Biomech Eng; 2009 Jul; 131(7):074521. PubMed ID: 19640157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurite infiltration and cellular response to electrospun polycaprolactone scaffolds implanted into the brain.
    Nisbet DR; Rodda AE; Horne MK; Forsythe JS; Finkelstein DI
    Biomaterials; 2009 Sep; 30(27):4573-80. PubMed ID: 19500836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polar surface chemistry of nanofibrous polyurethane scaffold affects annulus fibrosus cell attachment and early matrix accumulation.
    Yang L; Kandel RA; Chang G; Santerre JP
    J Biomed Mater Res A; 2009 Dec; 91(4):1089-99. PubMed ID: 19107787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the mechanics and nanotopography of biocompatible scaffolds through dielectrophoresis with carbon nanotubes.
    Lu YL; Cheng CM; LeDuc PR; Ho MS
    Electrophoresis; 2008 Aug; 29(15):3123-7. PubMed ID: 18615410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering.
    Jeong SI; Krebs MD; Bonino CA; Khan SA; Alsberg E
    Macromol Biosci; 2010 Aug; 10(8):934-43. PubMed ID: 20533533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate-attached serum and cell proteins in adhesion of mouse fibroblasts.
    Culp LA; Buniel JF
    J Cell Physiol; 1976 May; 88(1):89-106. PubMed ID: 1262408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun linear polyethyleneimine scaffolds for cell growth.
    Khanam N; Mikoryak C; Draper RK; Balkus KJ
    Acta Biomater; 2007 Nov; 3(6):1050-9. PubMed ID: 17702681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometric confinement influences cellular mechanical properties I -- adhesion area dependence.
    Su J; Jiang X; Welsch R; Whitesides GM; So PT
    Mol Cell Biomech; 2007 Jun; 4(2):87-104. PubMed ID: 17937113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.