These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19347953)

  • 21. Altering Glypican-1 levels modulates canonical Wnt signaling during trigeminal placode development.
    Shiau CE; Hu N; Bronner-Fraser M
    Dev Biol; 2010 Dec; 348(1):107-18. PubMed ID: 20883685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Initiation of olfactory placode development and neurogenesis is blocked in mice lacking both Six1 and Six4.
    Chen B; Kim EH; Xu PX
    Dev Biol; 2009 Feb; 326(1):75-85. PubMed ID: 19027001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular analysis of neurogenic placode development in a basal ray-finned fish.
    Modrell MS; Buckley D; Baker CV
    Genesis; 2011 Apr; 49(4):278-94. PubMed ID: 21381180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of FGF-dependent and FGF-independent pathways in otic placode induction.
    Yang L; O'Neill P; Martin K; Maass JC; Vassilev V; Ladher R; Groves AK
    PLoS One; 2013; 8(1):e55011. PubMed ID: 23355906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites.
    Kim YJ; Bahn M; Kim YH; Shin JY; Cheong SW; Ju BG; Kim WS; Yeo CY
    Dev Biol; 2015 Jan; 397(1):129-39. PubMed ID: 25446028
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Signaling mechanisms controlling cranial placode neurogenesis and delamination.
    Lassiter RN; Stark MR; Zhao T; Zhou CJ
    Dev Biol; 2014 May; 389(1):39-49. PubMed ID: 24315854
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Opposing Fgf and Bmp activities regulate the specification of olfactory sensory and respiratory epithelial cell fates.
    Maier E; von Hofsten J; Nord H; Fernandes M; Paek H; Hébert JM; Gunhaga L
    Development; 2010 May; 137(10):1601-11. PubMed ID: 20392740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cooperative and independent functions of FGF and Wnt signaling during early inner ear development.
    Wright KD; Mahoney Rogers AA; Zhang J; Shim K
    BMC Dev Biol; 2015 Oct; 15():33. PubMed ID: 26443994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A fate-map for cranial sensory ganglia in the sea lamprey.
    Modrell MS; Hockman D; Uy B; Buckley D; Sauka-Spengler T; Bronner ME; Baker CV
    Dev Biol; 2014 Jan; 385(2):405-16. PubMed ID: 24513489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sulfated glycosaminoglycans are required for specific and sensitive fibroblast growth factor (FGF) 19 signaling via FGF receptor 4 and betaKlotho.
    Nakamura M; Uehara Y; Asada M; Honda E; Nagai N; Kimata K; Suzuki M; Imamura T
    J Biol Chem; 2011 Jul; 286(30):26418-23. PubMed ID: 21653700
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The first steps towards hearing: mechanisms of otic placode induction.
    Ohyama T; Groves AK; Martin K
    Int J Dev Biol; 2007; 51(6-7):463-72. PubMed ID: 17891709
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Islet is a key determinant of ascidian palp morphogenesis.
    Wagner E; Stolfi A; Gi Choi Y; Levine M
    Development; 2014 Aug; 141(15):3084-92. PubMed ID: 24993943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specific induction of cranial placode cells from Xenopus ectoderm by modulating the levels of BMP, Wnt, and FGF signaling.
    Watanabe T; Kanai Y; Matsukawa S; Michiue T
    Genesis; 2015 Oct; 53(10):652-9. PubMed ID: 26249012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sprouty1 and Sprouty2 limit both the size of the otic placode and hindbrain Wnt8a by antagonizing FGF signaling.
    Mahoney Rogers AA; Zhang J; Shim K
    Dev Biol; 2011 May; 353(1):94-104. PubMed ID: 21362415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The mouse Foxi3 transcription factor is necessary for the development of posterior placodes.
    Birol O; Ohyama T; Edlund RK; Drakou K; Georgiades P; Groves AK
    Dev Biol; 2016 Jan; 409(1):139-151. PubMed ID: 26550799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fibroblast growth factor receptor 4 (FGFR4) mediates signaling to the prolactin but not the FGFR4 promoter.
    Yu S; Zheng L; Asa SL; Ezzat S
    Am J Physiol Endocrinol Metab; 2002 Sep; 283(3):E490-5. PubMed ID: 12169442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of skeletal muscle stem cell behavior by Pax3 and Pax7.
    Lagha M; Sato T; Bajard L; Daubas P; Esner M; Montarras D; Relaix F; Buckingham M
    Cold Spring Harb Symp Quant Biol; 2008; 73():307-15. PubMed ID: 19022756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FGF signaling is required for initiation of feather placode development.
    Mandler M; Neubüser A
    Development; 2004 Jul; 131(14):3333-43. PubMed ID: 15201222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-cytotoxic silver nanoparticle levels perturb human embryonic stem cell-dependent specification of the cranial placode in part via FGF signaling.
    Hu B; Yang R; Cheng Z; Liang S; Liang S; Yin N; Faiola F
    J Hazard Mater; 2020 Jul; 393():122440. PubMed ID: 32151936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FGF signaling regulates expression of Tbx2, Erm, Pea3, and Pax3 in the early nasal region.
    Firnberg N; Neubüser A
    Dev Biol; 2002 Jul; 247(2):237-50. PubMed ID: 12086464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.