These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19348741)

  • 1. Osmotic transport across cell membranes in nondilute solutions: a new nondilute solute transport equation.
    Elmoazzen HY; Elliott JA; McGann LE
    Biophys J; 2009 Apr; 96(7):2559-71. PubMed ID: 19348741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biomechanical triphasic approach to the transport of nondilute solutions in articular cartilage.
    Abazari A; Elliott JA; Law GK; McGann LE; Jomha NM
    Biophys J; 2009 Dec; 97(12):3054-64. PubMed ID: 20006942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dilute solution approximation and generalization of the reflection coefficient method of describing volume and solute flows.
    Mikulecky DC
    Biophys J; 1973 Sep; 13(9):994-9. PubMed ID: 4733703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport across homoporous and heteroporous membranes in nonideal, nondilute solutions. I. Inequality of reflection coefficients for volume flow and solute flow.
    Friedman MH; Meyer RA
    Biophys J; 1981 Jun; 34(3):535-44. PubMed ID: 7248473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport across homoporous and heteroporous membranes in nonideal, nondilute solutions. II. Inequality of phenomenological and tracer solute permeabilities.
    Friedman MH; Meyer RA
    Biophys J; 1981 Jun; 34(3):545-57. PubMed ID: 7248474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 1. Evaluation of Rij Peusner's coefficients for polymeric membrane].
    Batko KM; Slezak-Prochazka I; Slezak A
    Polim Med; 2013; 43(2):93-102. PubMed ID: 24044289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of the Kedem-Katchalsky equations.
    Slezak A; Turczynski B
    Biophys Chem; 1986 Jul; 24(2):173-8. PubMed ID: 3756309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing Kedem-Katchalsky equations of the transmembrane transport for binary nonhomogeneous non-electrolyte solutions.
    Slezak A; Jarzyńska M
    Polim Med; 2005; 35(1):15-20. PubMed ID: 16050073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L version of the transformed Kedem-Katchalsky equations for membrane transport of electrolyte solutions and internal energy conversion.
    Ślęzak A; Grzegorczyn SM
    Polim Med; 2024; 54(1):45-57. PubMed ID: 38315071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 2. Evaluation of Lij Peusner's coefficients for polymeric membrane].
    Batko KM; Slezak-Prochazka I; Slezak A
    Polim Med; 2013; 43(2):103-9. PubMed ID: 24044290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A development of the generalized Spiegler-Kedem-Katchalsky model equations for interactions of hydrated species in transport through polymeric membranes.
    Slezak A; Grzegorczyn S
    Polim Med; 2006; 36(4):43-51. PubMed ID: 17402232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single water channels of aquaporin-1 do not obey the Kedem-Katchalsky equations.
    Curry MR; Shachar-Hill B; Hill AE
    J Membr Biol; 2001 May; 181(2):115-23. PubMed ID: 11420598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A physical interpretation of the phenomenological coefficients of membrane permeability.
    KEDEM O; KATCHALSKY A
    J Gen Physiol; 1961 Sep; 45(1):143-79. PubMed ID: 13752127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 6. Evaluation of Kij Peusner's coefficients for polymeric membrane].
    Batko KM; Slęzak-Prochazka I; Slęzak A
    Polim Med; 2013; 43(4):277-95. PubMed ID: 24596042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 3. Evaluation of Hij Peusner's coefficients for polymeric membrane].
    Batko KM; Slezak-Prochazka I; Slezak A
    Polim Med; 2013; 43(2):111-8. PubMed ID: 24044291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic equations for membrane substance transport and their identity with Kedem-Katchalsky equations.
    Kargol M; Kargol A
    Biophys Chem; 2003 Jan; 103(2):117-27. PubMed ID: 12568935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic formalism for membrane transport generated by osmotic and mechanical pressure.
    Kargol M; Kargol A
    Gen Physiol Biophys; 2003 Mar; 22(1):51-68. PubMed ID: 12870701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mixture theory analysis for passive transport in osmotic loading of cells.
    Ateshian GA; Likhitpanichkul M; Hung CT
    J Biomech; 2006; 39(3):464-75. PubMed ID: 16389086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants.
    Hammel HT; Schlegel WM
    Cell Biochem Biophys; 2005; 42(3):277-345. PubMed ID: 15976460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 4. Evaluation of Wij Peusner's coefficients for polymeric membrane].
    Batko KM; Slęzak-Prochazka I; Slęzak A
    Polim Med; 2013; 43(4):241-56. PubMed ID: 24596040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.