BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 19348744)

  • 1. Macroscopic models of local field potentials and the apparent 1/f noise in brain activity.
    Bédard C; Destexhe A
    Biophys J; 2009 Apr; 96(7):2589-603. PubMed ID: 19348744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A framework to reconcile frequency scaling measurements, from intracellular recordings, local-field potentials, up to EEG and MEG signals.
    Bedard C; Gomes JM; Bal T; Destexhe A
    J Integr Neurosci; 2017; 16(1):3-18. PubMed ID: 28891497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular and intracellular components of the impedance of neural tissue.
    Bedard C; Piette C; Venance L; Destexhe A
    Biophys J; 2022 Mar; 121(6):869-885. PubMed ID: 35182541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impedance Spectrum in Cortical Tissue: Implications for Propagation of LFP Signals on the Microscopic Level.
    Miceli S; Ness TV; Einevoll GT; Schubert D
    eNeuro; 2017; 4(1):. PubMed ID: 28197543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model of low-pass filtering of local field potentials in brain tissue.
    Bédard C; Kröger H; Destexhe A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051911. PubMed ID: 16802971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular Impedance Measurements Reveal Non-ohmic Properties of the Extracellular Medium around Neurons.
    Gomes JM; Bédard C; Valtcheva S; Nelson M; Khokhlova V; Pouget P; Venance L; Bal T; Destexhe A
    Biophys J; 2016 Jan; 110(1):234-46. PubMed ID: 26745426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectric properties of brain tissue between 0.01 and 10 GHz.
    Foster KR; Schepps JL; Stoy RD; Schwan HP
    Phys Med Biol; 1979 Nov; 24(6):1177-87. PubMed ID: 531093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unmasking local activity within local field potentials (LFPs) by removing distal electrical signals using independent component analysis.
    Whitmore NW; Lin SC
    Neuroimage; 2016 May; 132():79-92. PubMed ID: 26899209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-frequency dominant electrical conductivity imaging of in vivo human brain using high-frequency conductivity at Larmor-frequency and spherical mean diffusivity without external injection current.
    Jahng GH; Lee MB; Kim HJ; Je Woo E; Kwon OI
    Neuroimage; 2021 Jan; 225():117466. PubMed ID: 33075557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling extracellular field potentials and the frequency-filtering properties of extracellular space.
    Bédard C; Kröger H; Destexhe A
    Biophys J; 2004 Mar; 86(3):1829-42. PubMed ID: 14990509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved quantification of the dynamic extracellular space in the brain during short-lived event: methodology and simulations.
    Chen KC; Zhou Y; Zhao HH
    J Neurophysiol; 2019 May; 121(5):1718-1734. PubMed ID: 30786219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic conductivity tensor by analyzing diffusion tensor for electrical brain stimulation (EBS).
    Lee MB; Kim YH; Kim HJ; Kwon OI
    Phys Med Biol; 2018 Dec; 63(24):24NT04. PubMed ID: 30523812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the conductance of the sodium channel from current fluctuations at the node of Ranvier.
    Conti F; Hille B; Neumcke B; Nonner W; Stämpfli R
    J Physiol; 1976 Nov; 262(3):699-727. PubMed ID: 1087643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of single-file noise.
    Frehland E; Stephan W
    Biochim Biophys Acta; 1979 May; 553(2):326-41. PubMed ID: 444521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular electrical conductivity property imaging by decomposition of high-frequency conductivity at Larmor-frequency using multi-b-value diffusion-weighted imaging.
    Lee MB; Jahng GH; Kim HJ; Woo EJ; Kwon OI
    PLoS One; 2020; 15(4):e0230903. PubMed ID: 32267858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion diffusion may introduce spurious current sources in current-source density (CSD) analysis.
    Halnes G; Mäki-Marttunen T; Pettersen KH; Andreassen OA; Einevoll GT
    J Neurophysiol; 2017 Jul; 118(1):114-120. PubMed ID: 28298307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum.
    Nicholson C; Phillips JM
    J Physiol; 1981 Dec; 321():225-57. PubMed ID: 7338810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for frequency-dependent extracellular impedance from the transfer function between extracellular and intracellular potentials: intracellular-LFP transfer function.
    Bédard C; Rodrigues S; Roy N; Contreras D; Destexhe A
    J Comput Neurosci; 2010 Dec; 29(3):389-403. PubMed ID: 20559865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An anatomical model for streaming potentials in osteons.
    Pollack SR; Petrov N; Salzstein R; Brankov G; Blagoeva R
    J Biomech; 1984; 17(8):627-36. PubMed ID: 6490675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Claims that the Brain Extracellular Impedance Is High and Non-resistive.
    Barbour B
    Biophys J; 2017 Oct; 113(7):1636-1638. PubMed ID: 28978453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.