BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19348779)

  • 1. Methods for sample labeling and meniscus determination in the fluorescence-detected analytical ultracentrifuge.
    Bailey MF; Angley LM; Perugini MA
    Anal Biochem; 2009 Jul; 390(2):218-20. PubMed ID: 19348779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding.
    Bailey MF; Van der Schans EJ; Millar DP
    Biochemistry; 2007 Jul; 46(27):8085-99. PubMed ID: 17567151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligonucleotides labeled with single fluorophores as sensors for deoxynucleotide triphosphate binding by DNA polymerases.
    Nikiforov TT
    Anal Biochem; 2014 Jan; 444():60-6. PubMed ID: 24096197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence-detected sedimentation in dilute and highly concentrated solutions.
    Kingsbury JS; Laue TM
    Methods Enzymol; 2011; 492():283-304. PubMed ID: 21333796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent oligonucleotides and deoxynucleotide triphosphates: preparation and their interaction with the large (Klenow) fragment of Escherichia coli DNA polymerase I.
    Allen DJ; Darke PL; Benkovic SJ
    Biochemistry; 1989 May; 28(11):4601-7. PubMed ID: 2669960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic dissection of the polymerizing and editing modes of a DNA polymerase.
    Bailey MF; van der Schans EJ; Millar DP
    J Mol Biol; 2004 Feb; 336(3):673-93. PubMed ID: 15095980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Behavior of the large fragment of DNA polymerase I (the Klenow fragment) during fractionation of a cell-free extract of E. coli MRE-600].
    Khomov VV; Zagrebel'nyĭ SN; Legostaeva GA; Oreshkova SF
    Prikl Biokhim Mikrobiol; 1987; 23(4):530-5. PubMed ID: 3309931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sedimentation velocity method in the analytical ultracentrifuge for the study of protein-protein interactions.
    Urbanke C; Witte G; Curth U
    Methods Mol Biol; 2005; 305():101-14. PubMed ID: 15939995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A therapeutic antibody and its antigen form different complexes in serum than in phosphate-buffered saline: a study by analytical ultracentrifugation.
    Demeule B; Shire SJ; Liu J
    Anal Biochem; 2009 May; 388(2):279-87. PubMed ID: 19289095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing DNA polymerase fidelity mechanisms using time-resolved fluorescence anisotropy.
    Bailey MF; Thompson EH; Millar DP
    Methods; 2001 Sep; 25(1):62-77. PubMed ID: 11558998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of DNA-protein interactions using double-labeled native gel electrophoresis and fluorescence-based imaging.
    Forwood JK; Jans DA
    Electrophoresis; 2006 Aug; 27(16):3166-70. PubMed ID: 16915571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the structure and composition of individual lipoplex particles by flow fluorometry.
    Pozharski EV; Macdonald RC
    Anal Biochem; 2005 Jun; 341(2):230-40. PubMed ID: 15907868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The large fragment of Escherichia coli DNA polymerase I can synthesize DNA exclusively from fluorescently labeled nucleotides.
    Brakmann S; Nieckchen P
    Chembiochem; 2001 Oct; 2(10):773-7. PubMed ID: 11948861
    [No Abstract]   [Full Text] [Related]  

  • 14. Photoregulation of DNA polymerase I (Klenow) with caged fluorescent oligodeoxynucleotides.
    Tang X; Richards JL; Peritz AE; Dmochowski IJ
    Bioorg Med Chem Lett; 2005 Dec; 15(23):5303-6. PubMed ID: 16188439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence detection for the XLI analytical ultracentrifuge.
    MacGregor IK; Anderson AL; Laue TM
    Biophys Chem; 2004 Mar; 108(1-3):165-85. PubMed ID: 15043928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dielectric-sensitive fluorescent DNA probe for monitoring polarities on the interior of a DNA-binding protein.
    Okamoto A; Tainaka K; Saito I
    Bioconjug Chem; 2005; 16(5):1105-11. PubMed ID: 16173786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NUTS and BOLTS: applications of fluorescence-detected sedimentation.
    Kroe RR; Laue TM
    Anal Biochem; 2009 Jul; 390(1):1-13. PubMed ID: 19103145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence correlation spectroscopy for ultrasensitive DNA analysis in continuous flow capillary electrophoresis.
    Fogarty K; Van Orden A
    Methods; 2009 Mar; 47(3):151-8. PubMed ID: 18852049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quenched ligand-directed tosylate reagents for one-step construction of turn-on fluorescent biosensors.
    Tsukiji S; Wang H; Miyagawa M; Tamura T; Takaoka Y; Hamachi I
    J Am Chem Soc; 2009 Jul; 131(25):9046-54. PubMed ID: 19499918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sensitive and selective ratiometric near IR fluorescent probe for zinc ions based on the distyryl-bodipy fluorophore.
    Atilgan S; Ozdemir T; Akkaya EU
    Org Lett; 2008 Sep; 10(18):4065-7. PubMed ID: 18702498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.