These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19348898)

  • 21. Gel-based methods in redox proteomics.
    Charles R; Jayawardhana T; Eaton P
    Biochim Biophys Acta; 2014 Feb; 1840(2):830-7. PubMed ID: 23624333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches.
    Nietzel T; Mostertz J; Hochgräfe F; Schwarzländer M
    Mitochondrion; 2017 Mar; 33():72-83. PubMed ID: 27456428
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ kinetic trapping reveals a fingerprint of reversible protein thiol oxidation in the mitochondrial matrix.
    Engelhard J; Christian BE; Weingarten L; Kuntz G; Spremulli LL; Dick TP
    Free Radic Biol Med; 2011 May; 50(10):1234-41. PubMed ID: 21295137
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Concepts and approaches towards understanding the cellular redox proteome.
    Ströher E; Dietz KJ
    Plant Biol (Stuttg); 2006 Jul; 8(4):407-18. PubMed ID: 16906481
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteomic detection of oxidized and reduced thiol proteins in cultured cells.
    Cuddihy SL; Baty JW; Brown KK; Winterbourn CC; Hampton MB
    Methods Mol Biol; 2009; 519():363-75. PubMed ID: 19381595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescence thiol modification assay: oxidatively modified proteins in Bacillus subtilis.
    Hochgräfe F; Mostertz J; Albrecht D; Hecker M
    Mol Microbiol; 2005 Oct; 58(2):409-25. PubMed ID: 16194229
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reverse Thiol Trapping Approach to Assess the Thiol Status of Metal-Binding Mitochondrial Proteins.
    Zhong H; Nyvltova E; Barrientos A
    Methods Mol Biol; 2024; 2839():249-259. PubMed ID: 39008259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein thiol modifications visualized in vivo.
    Leichert LI; Jakob U
    PLoS Biol; 2004 Nov; 2(11):e333. PubMed ID: 15502869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thiols in cellular redox signalling and control.
    Moran LK; Gutteridge JM; Quinlan GJ
    Curr Med Chem; 2001 Jun; 8(7):763-72. PubMed ID: 11375748
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantification and identification of mitochondrial proteins containing vicinal dithiols.
    Requejo R; Chouchani ET; James AM; Prime TA; Lilley KS; Fearnley IM; Murphy MP
    Arch Biochem Biophys; 2010 Dec; 504(2):228-35. PubMed ID: 20836988
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Difference gel electrophoresis (DIGE) using CyDye DIGE fluor minimal dyes.
    Chakravarti B; Gallagher SR; Chakravarti DN
    Curr Protoc Mol Biol; 2005 Feb; Chapter 10():Unit 10.23. PubMed ID: 18265353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A sensitive method for the quantitative measurement of protein thiol modification in response to oxidative stress.
    Landar A; Oh JY; Giles NM; Isom A; Kirk M; Barnes S; Darley-Usmar VM
    Free Radic Biol Med; 2006 Feb; 40(3):459-68. PubMed ID: 16443161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox regulation of apoptosis: impact of thiol oxidation status on mitochondrial function.
    Marchetti P; Decaudin D; Macho A; Zamzami N; Hirsch T; Susin SA; Kroemer G
    Eur J Immunol; 1997 Jan; 27(1):289-96. PubMed ID: 9022031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using Flow Cytometry to Detect and Measure Intracellular Thiol Redox Status in Viable T Cells from Heterogeneous Populations.
    Wadley AJ; Morgan RG; Darley RL; Hole PS; Coles SJ
    Methods Mol Biol; 2019; 1990():53-70. PubMed ID: 31148062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Saccharomyces cerevisiae proteome of oxidized protein thiols: contrasted functions for the thioredoxin and glutathione pathways.
    Le Moan N; Clement G; Le Maout S; Tacnet F; Toledano MB
    J Biol Chem; 2006 Apr; 281(15):10420-30. PubMed ID: 16418165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry.
    Kumar V; Kleffmann T; Hampton MB; Cannell MB; Winterbourn CC
    Free Radic Biol Med; 2013 May; 58():109-17. PubMed ID: 23376233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial and cytosolic thiol redox state are not detectably altered in isolated human NADH:ubiquinone oxidoreductase deficiency.
    Verkaart S; Koopman WJ; Cheek J; van Emst-de Vries SE; van den Heuvel LW; Smeitink JA; Willems PH
    Biochim Biophys Acta; 2007 Sep; 1772(9):1041-51. PubMed ID: 17600689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial thiols in the regulation of cell death pathways.
    Yin F; Sancheti H; Cadenas E
    Antioxid Redox Signal; 2012 Dec; 17(12):1714-27. PubMed ID: 22530585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of redox-sensitive exofacial protein thiols in CHO cells.
    Laragione T; Gianazza E; Tonelli R; Bigini P; Mennini T; Casoni F; Massignan T; Bonetto V; Ghezzi P
    Biol Chem; 2006; 387(10-11):1371-6. PubMed ID: 17081109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.