BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 19348901)

  • 1. Chapter 22 The uptake and interactions of the redox cycler paraquat with mitochondria.
    Cochemé HM; Murphy MP
    Methods Enzymol; 2009; 456():395-417. PubMed ID: 19348901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex I is the major site of mitochondrial superoxide production by paraquat.
    Cochemé HM; Murphy MP
    J Biol Chem; 2008 Jan; 283(4):1786-98. PubMed ID: 18039652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat.
    Robb EL; Gawel JM; Aksentijević D; Cochemé HM; Stewart TS; Shchepinova MM; Qiang H; Prime TA; Bright TP; James AM; Shattock MJ; Senn HM; Hartley RC; Murphy MP
    Free Radic Biol Med; 2015 Dec; 89():883-94. PubMed ID: 26454075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial superoxide generation induces a parkinsonian phenotype in zebrafish and huntingtin aggregation in human cells.
    Pinho BR; Reis SD; Hartley RC; Murphy MP; Oliveira JMA
    Free Radic Biol Med; 2019 Jan; 130():318-327. PubMed ID: 30389496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radical formation site of cerebral complex I and Parkinson's disease.
    Fukushima T; Tawara T; Isobe A; Hojo N; Shiwaku K; Yamane Y
    J Neurosci Res; 1995 Oct; 42(3):385-90. PubMed ID: 8583507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DJ-1 mediates paraquat-induced dopaminergic neuronal cell death.
    Kwon HJ; Heo JY; Shim JH; Park JH; Seo KS; Ryu MJ; Han JS; Shong M; Son JH; Kweon GR
    Toxicol Lett; 2011 Apr; 202(2):85-92. PubMed ID: 21300143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial susceptibility in a model of paraquat neurotoxicity.
    Czerniczyniec A; Lores-Arnaiz S; Bustamante J
    Free Radic Res; 2013 Aug; 47(8):614-23. PubMed ID: 23692144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights into antioxidant strategies against paraquat toxicity.
    Blanco-Ayala T; Andérica-Romero AC; Pedraza-Chaverri J
    Free Radic Res; 2014 Jun; 48(6):623-40. PubMed ID: 24593876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of respiratory chain in paraquat toxicity in yeast.
    Błaszczyński M; Litwińska J; Zaborowska D; Biliński T
    Acta Microbiol Pol; 1985; 34(3-4):243-54. PubMed ID: 2421540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paraquat damage of rat liver mitochondria by superoxide production depends on extramitochondrial NADH.
    Hirai K; Ikeda K; Wang GY
    Toxicology; 1992; 72(1):1-16. PubMed ID: 1347181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling.
    Brand MD
    Free Radic Biol Med; 2016 Nov; 100():14-31. PubMed ID: 27085844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of cytotoxicity of paraquat. II. Organ specificity of paraquat-stimulated lipid peroxidation in the inner membrane of mitochondria.
    Yamada K; Fukushima T
    Exp Toxicol Pathol; 1993 Oct; 45(5-6):375-80. PubMed ID: 8312726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Standardized extracts of Bacopa monniera protect against MPP+- and paraquat-induced toxicity by modulating mitochondrial activities, proteasomal functions, and redox pathways.
    Singh M; Murthy V; Ramassamy C
    Toxicol Sci; 2012 Jan; 125(1):219-32. PubMed ID: 21972102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tanshinone I Induces Mitochondrial Protection through an Nrf2-Dependent Mechanism in Paraquat-TreatedHuman Neuroblastoma SH-SY5Y Cells.
    de Oliveira MR; Schuck PF; Bosco SMD
    Mol Neurobiol; 2017 Aug; 54(6):4597-4608. PubMed ID: 27389776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A drastic superoxide-dependent oxidative stress is prerequisite for the down-regulation of IRP1: Insights from studies on SOD1-deficient mice and macrophages treated with paraquat.
    Milczarek A; Starzyński RR; Styś A; Jończy A; Staroń R; Grzelak A; Lipiński P
    PLoS One; 2017; 12(5):e0176800. PubMed ID: 28542246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EPR studies of spin-trapped free radicals in paraquat-treated lung microsomes.
    Zang LY; van Kuijk FJ; Misra HP
    Biochem Mol Biol Int; 1995 Oct; 37(2):255-62. PubMed ID: 8673008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of Redox Imbalance in Normal Lymphocytes with Induced Mitochondrial Dysfunction - EPR Study.
    Georgieva E; Zhelev Z; Aoki I; Bakalova R; Higashi T
    Anticancer Res; 2016 Oct; 36(10):5273-5279. PubMed ID: 27798888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial and cytosolic expression of human peroxiredoxin 5 in Saccharomyces cerevisiae protect yeast cells from oxidative stress induced by paraquat.
    Tiên Nguyên-nhu N; Knoops B
    FEBS Lett; 2003 Jun; 544(1-3):148-52. PubMed ID: 12782306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future.
    Cheng G; Zielonka M; Dranka B; Kumar SN; Myers CR; Bennett B; Garces AM; Dias Duarte Machado LG; Thiebaut D; Ouari O; Hardy M; Zielonka J; Kalyanaraman B
    J Biol Chem; 2018 Jun; 293(26):10363-10380. PubMed ID: 29739855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools.
    James AM; Cochemé HM; Smith RA; Murphy MP
    J Biol Chem; 2005 Jun; 280(22):21295-312. PubMed ID: 15788391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.