BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 19349116)

  • 1. Arsenic removal by iron-doped activated carbons prepared by ferric chloride forced hydrolysis.
    Fierro V; Muñiz G; Gonzalez-Sánchez G; Ballinas ML; Celzard A
    J Hazard Mater; 2009 Aug; 168(1):430-7. PubMed ID: 19349116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, characterization and performance in arsenic removal of iron-doped activated carbons prepared by impregnation with Fe(III) and Fe(II).
    Muñiz G; Fierro V; Celzard A; Furdin G; Gonzalez-Sánchez G; Ballinas ML
    J Hazard Mater; 2009 Jun; 165(1-3):893-902. PubMed ID: 19135299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water.
    Zhang QL; Lin YC; Chen X; Gao NY
    J Hazard Mater; 2007 Sep; 148(3):671-8. PubMed ID: 17434260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic removal by iron-modified activated carbon.
    Chen W; Parette R; Zou J; Cannon FS; Dempsey BA
    Water Res; 2007 May; 41(9):1851-8. PubMed ID: 17367839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of phosphate on the particle size of ferric oxyhydroxides anchored onto activated carbon: As(V) removal from water.
    Arcibar-Orozco JA; Avalos-Borja M; Rangel-Mendez JR
    Environ Sci Technol; 2012 Sep; 46(17):9577-83. PubMed ID: 22882013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anchorage of iron hydro(oxide) nanoparticles onto activated carbon to remove As(V) from water.
    Nieto-Delgado C; Rangel-Mendez JR
    Water Res; 2012 Jun; 46(9):2973-82. PubMed ID: 22483710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic removal by modified activated carbons with iron hydro(oxide) nanoparticles.
    Vitela-Rodriguez AV; Rangel-Mendez JR
    J Environ Manage; 2013 Jan; 114():225-31. PubMed ID: 23146335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of arsenic from water by supported nano zero-valent iron on activated carbon.
    Zhu H; Jia Y; Wu X; Wang H
    J Hazard Mater; 2009 Dec; 172(2-3):1591-6. PubMed ID: 19733972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons.
    Cooper AM; Hristovski KD; Möller T; Westerhoff P; Sylvester P
    J Hazard Mater; 2010 Nov; 183(1-3):381-8. PubMed ID: 20688429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activated carbon/iron oxide composites for the removal of atrazine from aqueous medium.
    Castro CS; Guerreiro MC; Gonçalves M; Oliveira LC; Anastácio AS
    J Hazard Mater; 2009 May; 164(2-3):609-14. PubMed ID: 18838216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of As(V) using iron oxide impregnated carbon prepared from Tamarind hull.
    Maiti A; Agarwal V; De S; Basu JK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Aug; 45(10):1203-12. PubMed ID: 20563914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined hydrous ferric oxide and quaternary ammonium surfactant tailoring of granular activated carbon for concurrent arsenate and perchlorate removal.
    Jang M; Cannon FS; Parette RB; Yoon SJ; Chen W
    Water Res; 2009 Jul; 43(12):3133-43. PubMed ID: 19476961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of arsenic removal efficiency by ferric ions using response surface methodology.
    Baskan MB; Pala A
    J Hazard Mater; 2009 Jul; 166(2-3):796-801. PubMed ID: 19147281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling As(V) removal by a iron oxide impregnated activated carbon using the surface complexation approach.
    Vaughan RL; Reed BE
    Water Res; 2005 Mar; 39(6):1005-14. PubMed ID: 15766955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study on removal of arsenic in drinking water by metal loaded materials].
    Zhao Y; Chen Y; Lin S; Yao C; Zhang L
    Wei Sheng Yan Jiu; 2004 Sep; 33(5):550-2. PubMed ID: 15612476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of arsenic from water using granular ferric hydroxide: macroscopic and microscopic studies.
    Guan XH; Wang J; Chusuei CC
    J Hazard Mater; 2008 Aug; 156(1-3):178-85. PubMed ID: 18206296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breakthrough behavior of granular ferric hydroxide (GFH) fixed-bed adsorption filters: modeling and experimental approaches.
    Sperlich A; Werner A; Genz A; Amy G; Worch E; Jekel M
    Water Res; 2005 Mar; 39(6):1190-8. PubMed ID: 15766974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron coated pottery granules for arsenic removal from drinking water.
    Dong L; Zinin PV; Cowen JP; Ming LC
    J Hazard Mater; 2009 Sep; 168(2-3):626-32. PubMed ID: 19356847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Well-head arsenic removal units in remote villages of Indian subcontinent: field results and performance evaluation.
    Sarkar S; Gupta A; Biswas RK; Deb AK; Greenleaf JE; Sengupta AK
    Water Res; 2005 May; 39(10):2196-206. PubMed ID: 15913703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hardness and alkalinity on the removal of arsenic(V) from humic acid-deficient and humic acid-rich groundwater by zero-valent iron.
    Mak MS; Rao P; Lo IM
    Water Res; 2009 Sep; 43(17):4296-304. PubMed ID: 19580986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.