BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 19349233)

  • 61. Restricted maximum likelihood estimation of PET neuroreceptor occupancy in the absence of a reference region.
    Radua J; Bullich S; Lopez N; Catafau AM
    Med Phys; 2011 May; 38(5):2558-62. PubMed ID: 21776791
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Evaluation of objective functions for estimation of kinetic parameters.
    Muzic RF; Christian BT
    Med Phys; 2006 Feb; 33(2):342-53. PubMed ID: 16532939
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Bayesian non-linear regression with spatial priors for noise reduction and error estimation in quantitative MRI with an application in T1 estimation.
    Löfstedt T; Hellström M; Bylund M; Garpebring A
    Phys Med Biol; 2020 Nov; 65(22):225036. PubMed ID: 32947277
    [TBL] [Abstract][Full Text] [Related]  

  • 64. An activity-subspace approach for estimating the integrated input function and relative distribution volume in PET parametric imaging.
    Qiu P; Wang ZJ; Liu KJ; Szabo Z
    IEEE Trans Inf Technol Biomed; 2009 Jan; 13(1):25-36. PubMed ID: 19129021
    [TBL] [Abstract][Full Text] [Related]  

  • 65. GLLS for optimally sampled continuous dynamic system modeling: theory and algorithm.
    Feng D; Ho D; Lau KK; Siu WC
    Comput Methods Programs Biomed; 1999 Apr; 59(1):31-43. PubMed ID: 10215175
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Performance evaluation of kinetic parameter estimation methods in dynamic FDG-PET studies.
    Dai X; Chen Z; Tian J
    Nucl Med Commun; 2011 Jan; 32(1):4-16. PubMed ID: 21166088
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A short-scan method for k(3) estimation with moderately reversible PET ligands: application of irreversible model to early-phase PET data.
    Sato K; Fukushi K; Shinotoh H; Shimada H; Tanaka N; Hirano S; Irie T
    Neuroimage; 2012 Feb; 59(4):3149-58. PubMed ID: 22079452
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Empirical Bayesian estimation in graphical analysis: a voxel-based approach for the determination of the volume of distribution in PET studies.
    Zanderigo F; Ogden RT; Bertoldo A; Cobelli C; Mann JJ; Parsey RV
    Nucl Med Biol; 2010 May; 37(4):443-51. PubMed ID: 20447556
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Multi-resolution Bayesian regression in PET dynamic studies using wavelets.
    Turkheimer FE; Aston JA; Asselin MC; Hinz R
    Neuroimage; 2006 Aug; 32(1):111-21. PubMed ID: 16644238
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Non linear mixed effects analysis in PET PK-receptor occupancy studies.
    Berges A; Cunningham VJ; Gunn RN; Zamuner S
    Neuroimage; 2013 Aug; 76():155-66. PubMed ID: 23518008
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Comparison of the number of parameters using nonlinear iteration methods for compartment model analysis with 18F-FDG brain PET].
    Taguchi A; Toyama H; Kimura Y; Senda M; Uchiyama A
    Kaku Igaku; 1997 Jan; 34(1):25-34. PubMed ID: 9059011
    [TBL] [Abstract][Full Text] [Related]  

  • 72. PET-ABC: fully Bayesian likelihood-free inference for kinetic models.
    Fan Y; Emvalomenos G; Grazian C; Meikle SR
    Phys Med Biol; 2021 May; 66(11):. PubMed ID: 33882476
    [No Abstract]   [Full Text] [Related]  

  • 73. Improving contrast between gray and white matter of Logan graphical analysis' parametric images in positron emission tomography through least-squares cubic regression and principal component analysis.
    Shigwedha PK; Yamada T; Hanaoka K; Ishii K; Kimura Y; Fukuoka Y
    Biomed Phys Eng Express; 2021 Mar; 7(3):. PubMed ID: 33662939
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Variance in parametric images: direct estimation from parametric projections.
    Maguire RP; Spyrou NM; Leenders KL
    Phys Med Biol; 2000 Jan; 45(1):91-102. PubMed ID: 10661585
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Categorical Omega With Small Sample Sizes via Bayesian Estimation: An Alternative to Frequentist Estimators.
    Yang Y; Xia Y
    Educ Psychol Meas; 2019 Feb; 79(1):19-39. PubMed ID: 30636780
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Estimation of Autoregressive Parameters from Noisy Observations Using Iterated Covariance Updates.
    Moon TK; Gunther JH
    Entropy (Basel); 2020 May; 22(5):. PubMed ID: 33286345
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Least squares estimation without priors or supervision.
    Raphan M; Simoncelli EP
    Neural Comput; 2011 Feb; 23(2):374-420. PubMed ID: 21105827
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Robust fitting for neuroreceptor mapping.
    Chang C; Ogden RT
    Stat Med; 2009 Mar; 28(6):1004-16. PubMed ID: 19109810
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data.
    Pan L; Cheng C; Haberkorn U; Dimitrakopoulou-Strauss A
    Phys Med Biol; 2017 May; 62(9):3566-3581. PubMed ID: 28379842
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Multiple linear analysis methods for the quantification of irreversibly binding radiotracers.
    Kim SJ; Lee JS; Kim YK; Frost J; Wand G; McCaul ME; Lee DS
    J Cereb Blood Flow Metab; 2008 Dec; 28(12):1965-77. PubMed ID: 18628777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.