BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 19349280)

  • 1. Thioredoxin-related Protein 32 is an arsenite-regulated Thiol Reductase of the proteasome 19 S particle.
    Wiseman RL; Chin KT; Haynes CM; Stanhill A; Xu CF; Roguev A; Krogan NJ; Neubert TA; Ron D
    J Biol Chem; 2009 May; 284(22):15233-45. PubMed ID: 19349280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thioredoxin Txnl1/TRP32 is a redox-active cofactor of the 26 S proteasome.
    Andersen KM; Madsen L; Prag S; Johnsen AH; Semple CA; Hendil KB; Hartmann-Petersen R
    J Biol Chem; 2009 May; 284(22):15246-54. PubMed ID: 19349277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Txl1 and Txc1 are co-factors of the 26S proteasome in fission yeast.
    Andersen KM; Jensen C; Kriegenburg F; Lauridsen AM; Gordon C; Hartmann-Petersen R
    Antioxid Redox Signal; 2011 May; 14(9):1601-8. PubMed ID: 21091378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification, molecular cloning, and characterization of TRP32, a novel thioredoxin-related mammalian protein of 32 kDa.
    Lee KK; Murakawa M; Takahashi S; Tsubuki S; Kawashima S; Sakamaki K; Yonehara S
    J Biol Chem; 1998 Jul; 273(30):19160-6. PubMed ID: 9668102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein thiol modifications visualized in vivo.
    Leichert LI; Jakob U
    PLoS Biol; 2004 Nov; 2(11):e333. PubMed ID: 15502869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An arsenite-inducible 19S regulatory particle-associated protein adapts proteasomes to proteotoxicity.
    Stanhill A; Haynes CM; Zhang Y; Min G; Steele MC; Kalinina J; Martinez E; Pickart CM; Kong XP; Ron D
    Mol Cell; 2006 Sep; 23(6):875-85. PubMed ID: 16973439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lafora disease fibroblasts exemplify the molecular interdependence between thioredoxin 1 and the proteasome in mammalian cells.
    García-Giménez JL; Seco-Cervera M; Aguado C; Romá-Mateo C; Dasí F; Priego S; Markovic J; Knecht E; Sanz P; Pallardó FV
    Free Radic Biol Med; 2013 Dec; 65():347-359. PubMed ID: 23850970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. drFrnE Represents a Hitherto Unknown Class of Eubacterial Cytoplasmic Disulfide Oxido-Reductases.
    Bihani SC; Panicker L; Rajpurohit YS; Misra HS; Kumar V
    Antioxid Redox Signal; 2018 Feb; 28(4):296-310. PubMed ID: 28899103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacillus subtilis ResA is a thiol-disulfide oxidoreductase involved in cytochrome c synthesis.
    Erlendsson LS; Acheson RM; Hederstedt L; Le Brun NE
    J Biol Chem; 2003 May; 278(20):17852-8. PubMed ID: 12637552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods to identify the substrates of thiol-disulfide oxidoreductases.
    Fujimoto T; Inaba K; Kadokura H
    Protein Sci; 2019 Jan; 28(1):30-40. PubMed ID: 30341785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General acid/base catalysis in the active site of Escherichia coli thioredoxin.
    Chivers PT; Raines RT
    Biochemistry; 1997 Dec; 36(50):15810-6. PubMed ID: 9398311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and properties of mixed disulfides between thioredoxin reductase from Escherichia coli and thioredoxin: evidence that cysteine-138 functions to initiate dithiol-disulfide interchange and to accept the reducing equivalent from reduced flavin.
    Veine DM; Mulrooney SB; Wang PF; Williams CH
    Protein Sci; 1998 Jun; 7(6):1441-50. PubMed ID: 9655349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein carbonylation and decarboylation: a new twist to the complex response of vascular cells to oxidative stress.
    Cattaruzza M; Hecker M
    Circ Res; 2008 Feb; 102(3):273-4. PubMed ID: 18276922
    [No Abstract]   [Full Text] [Related]  

  • 14. Mechanistic insights into the inhibitory effects of palmitoylation on cytosolic thioredoxin reductase and thioredoxin.
    Qin H; Liang W; Xu Z; Ye F; Li X; Zhong L
    Biochimie; 2015 Mar; 110():25-35. PubMed ID: 25576832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of cellular ubiquitin levels on the regulation of oxidative stress response and proteasome function via Nrf1.
    Lee D; Ryu KY
    Biochem Biophys Res Commun; 2017 Apr; 485(2):234-240. PubMed ID: 28237703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif.
    Watson WH; Pohl J; Montfort WR; Stuchlik O; Reed MS; Powis G; Jones DP
    J Biol Chem; 2003 Aug; 278(35):33408-15. PubMed ID: 12816947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational fluctuations coupled to the thiol-disulfide transfer between thioredoxin and arsenate reductase in Bacillus subtilis.
    Li Y; Hu Y; Zhang X; Xu H; Lescop E; Xia B; Jin C
    J Biol Chem; 2007 Apr; 282(15):11078-83. PubMed ID: 17303556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteasomal adaptation to environmental stress links resistance to proteotoxicity with longevity in Caenorhabditis elegans.
    Yun C; Stanhill A; Yang Y; Zhang Y; Haynes CM; Xu CF; Neubert TA; Mor A; Philips MR; Ron D
    Proc Natl Acad Sci U S A; 2008 May; 105(19):7094-9. PubMed ID: 18467495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity of thioredoxin as a protein thiol-disulfide oxidoreductase.
    Cheng Z; Zhang J; Ballou DP; Williams CH
    Chem Rev; 2011 Sep; 111(9):5768-83. PubMed ID: 21793530
    [No Abstract]   [Full Text] [Related]  

  • 20. The GST-BHMT assay reveals a distinct mechanism underlying proteasome inhibition-induced macroautophagy in mammalian cells.
    Rui YN; Xu Z; Chen Z; Zhang S
    Autophagy; 2015; 11(5):812-32. PubMed ID: 25984893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.