These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 19349687)

  • 1. beta-Arrestin1 mediates nicotinic acid-induced flushing, but not its antilipolytic effect, in mice.
    Walters RW; Shukla AK; Kovacs JJ; Violin JD; DeWire SM; Lam CM; Chen JR; Muehlbauer MJ; Whalen EJ; Lefkowitz RJ
    J Clin Invest; 2009 May; 119(5):1312-21. PubMed ID: 19349687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GPR109A (PUMA-G/HM74A) mediates nicotinic acid-induced flushing.
    Benyó Z; Gille A; Kero J; Csiky M; Suchánková MC; Nüsing RM; Moers A; Pfeffer K; Offermanns S
    J Clin Invest; 2005 Dec; 115(12):3634-40. PubMed ID: 16322797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of 4-(phenyl)thio-1H-pyrazole derivatives as agonists of GPR109A, a high affinity niacin receptor.
    Kim HY; Jadhav VB; Jeong DY; Park WK; Song JH; Lee S; Cho H
    Arch Pharm Res; 2015 Jun; 38(6):1019-32. PubMed ID: 25599616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Langerhans cells release prostaglandin D2 in response to nicotinic acid.
    Maciejewski-Lenoir D; Richman JG; Hakak Y; Gaidarov I; Behan DP; Connolly DT
    J Invest Dermatol; 2006 Dec; 126(12):2637-46. PubMed ID: 17008871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential tissue and ligand-dependent signaling of GPR109A receptor: implications for anti-atherosclerotic therapeutic potential.
    Gaidarov I; Chen X; Anthony T; Maciejewski-Lenoir D; Liaw C; Unett DJ
    Cell Signal; 2013 Oct; 25(10):2003-16. PubMed ID: 23770183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Niacin stimulates adiponectin secretion through the GPR109A receptor.
    Plaisance EP; Lukasova M; Offermanns S; Zhang Y; Cao G; Judd RL
    Am J Physiol Endocrinol Metab; 2009 Mar; 296(3):E549-58. PubMed ID: 19141678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Niacin lipid efficacy is independent of both the niacin receptor GPR109A and free fatty acid suppression.
    Lauring B; Taggart AK; Tata JR; Dunbar R; Caro L; Cheng K; Chin J; Colletti SL; Cote J; Khalilieh S; Liu J; Luo WL; Maclean AA; Peterson LB; Polis AB; Sirah W; Wu TJ; Liu X; Jin L; Wu K; Boatman PD; Semple G; Behan DP; Connolly DT; Lai E; Wagner JA; Wright SD; Cuffie C; Mitchel YB; Rader DJ; Paolini JF; Waters MG; Plump A
    Sci Transl Med; 2012 Aug; 4(148):148ra115. PubMed ID: 22914621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor.
    Shenoy SK; Drake MT; Nelson CD; Houtz DA; Xiao K; Madabushi S; Reiter E; Premont RT; Lichtarge O; Lefkowitz RJ
    J Biol Chem; 2006 Jan; 281(2):1261-73. PubMed ID: 16280323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nicotinic acid- and monomethyl fumarate-induced flushing involves GPR109A expressed by keratinocytes and COX-2-dependent prostanoid formation in mice.
    Hanson J; Gille A; Zwykiel S; Lukasova M; Clausen BE; Ahmed K; Tunaru S; Wirth A; Offermanns S
    J Clin Invest; 2010 Aug; 120(8):2910-9. PubMed ID: 20664170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nicotinic acid receptor agonists differentially activate downstream effectors.
    Richman JG; Kanemitsu-Parks M; Gaidarov I; Cameron JS; Griffin P; Zheng H; Guerra NC; Cham L; Maciejewski-Lenoir D; Behan DP; Boatman D; Chen R; Skinner P; Ornelas P; Waters MG; Wright SD; Semple G; Connolly DT
    J Biol Chem; 2007 Jun; 282(25):18028-18036. PubMed ID: 17452318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3-(1H-tetrazol-5-yl)-1,4,5,6-tetrahydro-cyclopentapyrazole (MK-0354): a partial agonist of the nicotinic acid receptor, G-protein coupled receptor 109a, with antilipolytic but no vasodilatory activity in mice.
    Semple G; Skinner PJ; Gharbaoui T; Shin YJ; Jung JK; Cherrier MC; Webb PJ; Tamura SY; Boatman PD; Sage CR; Schrader TO; Chen R; Colletti SL; Tata JR; Waters MG; Cheng K; Taggart AK; Cai TQ; Carballo-Jane E; Behan DP; Connolly DT; Richman JG
    J Med Chem; 2008 Aug; 51(16):5101-8. PubMed ID: 18665582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids.
    Ge H; Li X; Weiszmann J; Wang P; Baribault H; Chen JL; Tian H; Li Y
    Endocrinology; 2008 Sep; 149(9):4519-26. PubMed ID: 18499755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3,5-Dihydroxybenzoic acid, a specific agonist for hydroxycarboxylic acid 1, inhibits lipolysis in adipocytes.
    Liu C; Kuei C; Zhu J; Yu J; Zhang L; Shih A; Mirzadegan T; Shelton J; Sutton S; Connelly MA; Lee G; Carruthers N; Wu J; Lovenberg TW
    J Pharmacol Exp Ther; 2012 Jun; 341(3):794-801. PubMed ID: 22434674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of rat and dog models of vasodilatation and lipolysis for the calculation of a therapeutic index for GPR109A agonists.
    Carballo-Jane E; Gerckens LS; Luell S; Parlapiano AS; Wolff M; Colletti SL; Tata JR; Taggart AK; Waters MG; Richman JG; McCann ME; Forrest MJ
    J Pharmacol Toxicol Methods; 2007; 56(3):308-16. PubMed ID: 17643322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery and characterization of GSK256073, a non-flushing hydroxy-carboxylic acid receptor 2 (HCA2) agonist.
    Sprecher D; Maxwell M; Goodman J; White B; Tang CM; Boullay V; de Gouville AC
    Eur J Pharmacol; 2015 Jun; 756():1-7. PubMed ID: 25773497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internalization of the human nicotinic acid receptor GPR109A is regulated by G(i), GRK2, and arrestin3.
    Li G; Shi Y; Huang H; Zhang Y; Wu K; Luo J; Sun Y; Lu J; Benovic JL; Zhou N
    J Biol Chem; 2010 Jul; 285(29):22605-18. PubMed ID: 20460384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of lysophosphatidic acid receptor-stimulated response by G-protein-coupled receptor kinase-2 and beta-arrestin1 in FRTL-5 rat thyroid cells.
    Iacovelli L; Capobianco L; D'Ancona GM; Picascia A; De Blasi A
    J Endocrinol; 2002 Jul; 174(1):103-10. PubMed ID: 12098668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a novel GPR81-selective agonist that suppresses lipolysis in mice without cutaneous flushing.
    Sakurai T; Davenport R; Stafford S; Grosse J; Ogawa K; Cameron J; Parton L; Sykes A; Mack S; Bousba S; Parmar A; Harrison D; Dickson L; Leveridge M; Matsui J; Barnes M
    Eur J Pharmacol; 2014 Mar; 727():1-7. PubMed ID: 24486398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor necrosis factor receptor-1 can function through a G alpha q/11-beta-arrestin-1 signaling complex.
    Kawamata Y; Imamura T; Babendure JL; Lu JC; Yoshizaki T; Olefsky JM
    J Biol Chem; 2007 Sep; 282(39):28549-28556. PubMed ID: 17664271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The prostaglandin receptor EP2 activates multiple signaling pathways and beta-arrestin1 complex formation during mouse skin papilloma development.
    Chun KS; Lao HC; Trempus CS; Okada M; Langenbach R
    Carcinogenesis; 2009 Sep; 30(9):1620-7. PubMed ID: 19587094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.