These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 19349755)

  • 1. Effect of initial glucose concentrations on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1.
    Jo JH; Lee DS; Kim J; Park JM
    J Microbiol Biotechnol; 2009 Mar; 19(3):291-8. PubMed ID: 19349755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1.
    Jo JH; Lee DS; Park JM
    Bioresour Technol; 2008 Nov; 99(17):8485-91. PubMed ID: 18485698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon material distribution and flux analysis under varying glucose concentrations in hydrogen-producing Clostridium tyrobutyricum JM1.
    Jo JH; Kim W
    J Biotechnol; 2016 Jun; 228():103-111. PubMed ID: 27140868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon and energy balances of glucose fermentation with hydrogenproducing bacterium Citrobacter amalonaticus Y19.
    Oh YK; Park S; Seol EH; Kim SH; Kim MS; Hwang JW; Ryu DD
    J Microbiol Biotechnol; 2008 Mar; 18(3):532-8. PubMed ID: 18388473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of carbon and energy balances in the study of the anaerobic metabolism of Enterobacter aerogenes at variable starting glucose concentrations.
    Converti A; Perego P
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):303-9. PubMed ID: 12111162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic and energetic aspects of biohydrogen production of Clostridium tyrobutyricum: The effects of hydraulic retention time and peptone addition.
    Whang LM; Lin CA; Liu IC; Wu CW; Cheng HH
    Bioresour Technol; 2011 Sep; 102(18):8378-83. PubMed ID: 21511461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process.
    Jo JH; Lee DS; Park D; Park JM
    Bioresour Technol; 2008 Sep; 99(14):6666-72. PubMed ID: 18248983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum.
    Zhu Y; Yang ST
    J Biotechnol; 2004 May; 110(2):143-57. PubMed ID: 15121334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic process engineering of Clostridium tyrobutyricum Δack-adhE2 for enhanced n-butanol production from glucose: effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics.
    Du Y; Jiang W; Yu M; Tang IC; Yang ST
    Biotechnol Bioeng; 2015 Apr; 112(4):705-15. PubMed ID: 25363722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatics and metabolic flux analysis highlight a new mechanism involved in lactate oxidation in Clostridium tyrobutyricum.
    Munier E; Licandro H; Beuvier E; Cachon R
    Int Microbiol; 2023 Aug; 26(3):501-511. PubMed ID: 36609955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic flux network analysis of fermentative hydrogen production: using Clostridium tyrobutyricum as an example.
    Cheng HH; Whang LM; Lin CA; Liu IC; Wu CW
    Bioresour Technol; 2013 Aug; 141():233-9. PubMed ID: 23659760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of butyric acid from glucose and xylose with immobilized cells of Clostridium tyrobutyricum in a fibrous-bed bioreactor.
    Jiang L; Wang J; Liang S; Wang X; Cen P; Xu Z
    Appl Biochem Biotechnol; 2010 Jan; 160(2):350-9. PubMed ID: 18651247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production.
    Liu X; Zhu Y; Yang ST
    Biotechnol Prog; 2006; 22(5):1265-75. PubMed ID: 17022663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ptb knockout on butyric acid fermentation by Clostridium tyrobutyricum.
    Zhang Y; Yu M; Yang ST
    Biotechnol Prog; 2012; 28(1):52-9. PubMed ID: 22038864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of metabolism using stoichiometry in fermentative biohydrogen.
    Lee HS; Rittmann BE
    Biotechnol Bioeng; 2009 Feb; 102(3):749-58. PubMed ID: 18828179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous hydrogen and butyric acid fermentation by immobilized Clostridium tyrobutyricum ATCC 25755: effects of the glucose concentration and hydraulic retention time.
    Mitchell RJ; Kim JS; Jeon BS; Sang BI
    Bioresour Technol; 2009 Nov; 100(21):5352-5. PubMed ID: 19545998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering Clostridium tyrobutyricum Metabolism Based on the Whole-Genome Sequence and Proteome Analyses.
    Lee J; Jang YS; Han MJ; Kim JY; Lee SY
    mBio; 2016 Jun; 7(3):. PubMed ID: 27302759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling product formation in anaerobic mixed culture fermentations.
    Rodríguez J; Kleerebezem R; Lema JM; van Loosdrecht MC
    Biotechnol Bioeng; 2006 Feb; 93(3):592-606. PubMed ID: 16273553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction and characterization of pta gene-deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid fermentation.
    Zhu Y; Liu X; Yang ST
    Biotechnol Bioeng; 2005 Apr; 90(2):154-66. PubMed ID: 15759261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive evolution for fast growth on glucose and the effects on the regulation of glucose transport system in Clostridium tyrobutyricum.
    Jiang L; Li S; Hu Y; Xu Q; Huang H
    Biotechnol Bioeng; 2012 Mar; 109(3):708-18. PubMed ID: 21956266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.