These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
568 related articles for article (PubMed ID: 19350085)
21. Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization. Malic L; Veres T; Tabrizian M Biosens Bioelectron; 2009 Mar; 24(7):2218-24. PubMed ID: 19136248 [TBL] [Abstract][Full Text] [Related]
22. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate. Chen PJ; Shih CY; Tai YC Lab Chip; 2006 Jun; 6(6):803-10. PubMed ID: 16738734 [TBL] [Abstract][Full Text] [Related]
23. Digital microfluidics using soft lithography. Urbanski JP; Thies W; Rhodes C; Amarasinghe S; Thorsen T Lab Chip; 2006 Jan; 6(1):96-104. PubMed ID: 16372075 [TBL] [Abstract][Full Text] [Related]
24. Integrated microbioreactor for culture and analysis of bacteria, algae and yeast. Au SH; Shih SC; Wheeler AR Biomed Microdevices; 2011 Feb; 13(1):41-50. PubMed ID: 20838902 [TBL] [Abstract][Full Text] [Related]
25. A digital microfluidic method for in situ formation of porous polymer monoliths with application to solid-phase extraction. Yang H; Mudrik JM; Jebrail MJ; Wheeler AR Anal Chem; 2011 May; 83(10):3824-30. PubMed ID: 21524096 [TBL] [Abstract][Full Text] [Related]
26. Detection of fluorescence generated in microfluidic channel using in-fiber grooves and in-fiber microchannel sensors. Irawan R; Tjin SC Methods Mol Biol; 2009; 503():403-22. PubMed ID: 19151955 [TBL] [Abstract][Full Text] [Related]
27. A hybrid microfluidic chip with electrowetting functionality using ultraviolet (UV)-curable polymer. Gu H; Duits MH; Mugele F Lab Chip; 2010 Jun; 10(12):1550-6. PubMed ID: 20517557 [TBL] [Abstract][Full Text] [Related]
28. A disposable polymer sensor chip combined with micro-fluidics and surface plasmon read-out. Zhang N; Liu H; Knoll W Biosens Bioelectron; 2009 Feb; 24(6):1783-7. PubMed ID: 18835707 [TBL] [Abstract][Full Text] [Related]
29. A disposable and cost efficient microfluidic device for the rapid chip-based electrical detection of DNA. Schüler T; Kretschmer R; Jessing S; Urban M; Fritzsche W; Möller R; Popp J Biosens Bioelectron; 2009 Sep; 25(1):15-21. PubMed ID: 19592230 [TBL] [Abstract][Full Text] [Related]
30. Electrochromatographic separation on a poly(dimethylsiloxane)/glass chip by integration of a capillary containing an acrylate monolithic stationary phase. Blas M; Delaunay N; Rocca JL J Sep Sci; 2007 Nov; 30(17):3043-9. PubMed ID: 17924367 [TBL] [Abstract][Full Text] [Related]
31. A microfluidic device for continuous, real time blood plasma separation. Yang S; Undar A; Zahn JD Lab Chip; 2006 Jul; 6(7):871-80. PubMed ID: 16804591 [TBL] [Abstract][Full Text] [Related]
32. Spectrally resolved flow imaging of fluids inside a microfluidic chip with ultrahigh time resolution. Harel E; Pines A J Magn Reson; 2008 Aug; 193(2):199-206. PubMed ID: 18538599 [TBL] [Abstract][Full Text] [Related]
33. Integration of microfluidics with biomedical infrared spectroscopy for analytical and diagnostic metabolic profiling. Mansfield CD; Man A; Shaw RA IEE Proc Nanobiotechnol; 2006 Aug; 153(4):74-80. PubMed ID: 16948491 [TBL] [Abstract][Full Text] [Related]
34. Optimization of sample transfer in two-dimensional microfluidic separation systems. Yang S; Liu J; DeVoe DL Lab Chip; 2008 Jul; 8(7):1145-52. PubMed ID: 18584091 [TBL] [Abstract][Full Text] [Related]
35. Ninety-six-well planar lipid bilayer chip for ion channel recording fabricated by hybrid stereolithography. Suzuki H; Le Pioufle B; Takeuchi S Biomed Microdevices; 2009 Feb; 11(1):17-22. PubMed ID: 18584329 [TBL] [Abstract][Full Text] [Related]
36. Automatic microfluidic platform for cell separation and nucleus collection. Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288 [TBL] [Abstract][Full Text] [Related]
37. Dielectrophoresis-based cell manipulation using electrodes on a reusable printed circuit board. Park K; Suk HJ; Akin D; Bashir R Lab Chip; 2009 Aug; 9(15):2224-9. PubMed ID: 19606300 [TBL] [Abstract][Full Text] [Related]
38. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621 [TBL] [Abstract][Full Text] [Related]
39. Chemical cytometry on microfluidic chips. Yan H; Zhang B; Wu H Electrophoresis; 2008 May; 29(9):1775-86. PubMed ID: 18384067 [TBL] [Abstract][Full Text] [Related]
40. A digital microfluidic platform for the automation of quantitative biomolecular assays. Jensen EC; Bhat BP; Mathies RA Lab Chip; 2010 Mar; 10(6):685-91. PubMed ID: 20221555 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]