These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 19350092)

  • 21. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting.
    Tan YC; Fisher JS; Lee AI; Cristini V; Lee AP
    Lab Chip; 2004 Aug; 4(4):292-8. PubMed ID: 15269794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrostatic charging and control of droplets in microfluidic devices.
    Zhou H; Yao S
    Lab Chip; 2013 Mar; 13(5):962-9. PubMed ID: 23338121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The critical conditions for coalescence in phase field simulations of colliding droplets in shear.
    Shardt O; Mitra SK; Derksen JJ
    Langmuir; 2014 Dec; 30(48):14416-26. PubMed ID: 25396749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Delayed coalescence behavior of droplets with completely miscible liquids.
    Riegler H; Lazar P
    Langmuir; 2008 Jun; 24(13):6395-8. PubMed ID: 18517232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A numerical study on the coalescence of emulsion droplets in a constricted capillary tube.
    Yan L; Thompson KE; Valsaraj KT
    J Colloid Interface Sci; 2006 Jun; 298(2):832-44. PubMed ID: 16483593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling of droplet traffic in interconnected microfluidic ladder devices.
    Song K; Zhang L; Hu G
    Electrophoresis; 2012 Feb; 33(3):411-8. PubMed ID: 22228275
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of geometrical confinement on coalescence efficiency of droplet pairs in shear flow.
    De Bruyn P; Cardinaels R; Moldenaers P
    J Colloid Interface Sci; 2013 Nov; 409():183-92. PubMed ID: 23988082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Break-up, coalescence and catastrophic phase inversion in turbulent contactors.
    Nienow AW
    Adv Colloid Interface Sci; 2004 May; 108-109():95-103. PubMed ID: 15072932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model for drop coalescence in a locally isotropic turbulent flow field.
    Narsimhan G
    J Colloid Interface Sci; 2004 Apr; 272(1):197-209. PubMed ID: 14985038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of Microdroplet Breakup Regime in Asymmetric T-Junction Microchannels.
    Cheng WL; Sadr R; Dai J; Han A
    Biomed Microdevices; 2018 Aug; 20(3):72. PubMed ID: 30105562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Collective dynamics of non-coalescing and coalescing droplets in microfluidic parking networks.
    Bithi SS; Vanapalli SA
    Soft Matter; 2015 Jul; 11(25):5122-32. PubMed ID: 26036726
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pillar-induced droplet merging in microfluidic circuits.
    Niu X; Gulati S; Edel JB; deMello AJ
    Lab Chip; 2008 Nov; 8(11):1837-41. PubMed ID: 18941682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The head-on colliding process of binary liquid droplets at low velocity: high-speed photography experiments and modeling.
    Wang FC; Feng JT; Zhao YP
    J Colloid Interface Sci; 2008 Oct; 326(1):196-200. PubMed ID: 18656892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On-chip electrocoalescence of microdroplets as a function of voltage, frequency and droplet size.
    Zagnoni M; Cooper JM
    Lab Chip; 2009 Sep; 9(18):2652-8. PubMed ID: 19704980
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Raman spectroscopic monitoring of droplet polymerization in a microfluidic device.
    Barnes SE; Cygan ZT; Yates JK; Beers KL; Amis EJ
    Analyst; 2006 Sep; 131(9):1027-33. PubMed ID: 17047803
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Roles of interfacial properties on the stability of emulsified bitumen droplets.
    Moran K
    Langmuir; 2007 Apr; 23(8):4167-77. PubMed ID: 17323990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dynamics simulation of the coalescence of nanometer-sized water droplets in n-heptane.
    Zhao L; Choi P
    J Chem Phys; 2004 Jan; 120(4):1935-42. PubMed ID: 15268327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets.
    Yobas L; Martens S; Ong WL; Ranganathan N
    Lab Chip; 2006 Aug; 6(8):1073-9. PubMed ID: 16874381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arrested coalescence behaviour of giant Pickering droplets and colloidosomes stabilised by poly(tert-butylaminoethyl methacrylate) latexes.
    Morse AJ; Tan SY; Giakoumatos EC; Webber GB; Armes SP; Ata S; Wanless EJ
    Soft Matter; 2014 Aug; 10(31):5669-81. PubMed ID: 24919402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of droplet coalescence in nanoparticle suspensions by a microfluidic collision experiment.
    Zhou Q; Sun Y; Yi S; Wang K; Luo G
    Soft Matter; 2016 Feb; 12(6):1674-82. PubMed ID: 26701864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.