These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1119 related articles for article (PubMed ID: 19350299)
21. Mineralization of metoprolol by electro-Fenton and photoelectro-Fenton processes. Isarain-Chávez E; Garrido JA; Rodríguez RM; Centellas F; Arias C; Cabot PL; Brillas E J Phys Chem A; 2011 Feb; 115(7):1234-42. PubMed ID: 21288029 [TBL] [Abstract][Full Text] [Related]
22. The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton's reagent. Chen G; Hoag GE; Chedda P; Nadim F; Woody BA; Dobbs GM J Hazard Mater; 2001 Oct; 87(1-3):171-86. PubMed ID: 11566408 [TBL] [Abstract][Full Text] [Related]
23. Design of a neutral electro-Fenton system with Fe@Fe(2)O(3)/ACF composite cathode for wastewater treatment. Li J; Ai Z; Zhang L J Hazard Mater; 2009 May; 164(1):18-25. PubMed ID: 18768254 [TBL] [Abstract][Full Text] [Related]
24. The synergistic effect of nickel-iron-foam and tripolyphosphate for enhancing the electro-Fenton process at circum-neutral pH. Deng F; Olvera-Vargas H; Garcia-Rodriguez O; Qiu S; Yang J; Lefebvre O Chemosphere; 2018 Jun; 201():687-696. PubMed ID: 29547857 [TBL] [Abstract][Full Text] [Related]
25. Stabilized green rusts for aqueous Cr(VI) removal: Fast kinetics, high iron utilization rate and anti-acidification. Zhao J; Xiong S; Ai J; Wu J; Huang LZ; Yin W Chemosphere; 2021 Jan; 262():127853. PubMed ID: 32777616 [TBL] [Abstract][Full Text] [Related]
26. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Hug SJ; Leupin O Environ Sci Technol; 2003 Jun; 37(12):2734-42. PubMed ID: 12854713 [TBL] [Abstract][Full Text] [Related]
27. Abiotic process for Fe(II) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis). Etique M; Jorand FP; Zegeye A; Grégoire B; Despas C; Ruby C Environ Sci Technol; 2014 Apr; 48(7):3742-51. PubMed ID: 24605878 [TBL] [Abstract][Full Text] [Related]
28. Nitrite reduction by biogenic hydroxycarbonate green rusts: evidence for hydroxy-nitrite green rust formation as an intermediate reaction product. Guerbois D; Ona-Nguema G; Morin G; Abdelmoula M; Laverman AM; Mouchel JM; Barthelemy K; Maillot F; Brest J Environ Sci Technol; 2014 Apr; 48(8):4505-14. PubMed ID: 24708473 [TBL] [Abstract][Full Text] [Related]
29. Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials. Pham AL; Doyle FM; Sedlak DL Water Res; 2012 Dec; 46(19):6454-62. PubMed ID: 23047055 [TBL] [Abstract][Full Text] [Related]
30. Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants. Elsner M; Schwarzenbach RP; Haderlein SB Environ Sci Technol; 2004 Feb; 38(3):799-807. PubMed ID: 14968867 [TBL] [Abstract][Full Text] [Related]
31. Kinetic study of cis-dichloroethylene (cis-DCE) and vinyl chloride (VC) dechlorination using green rusts formed under varying conditions. Han YS; Hyun SP; Jeong HY; Hayes KF Water Res; 2012 Dec; 46(19):6339-50. PubMed ID: 23039917 [TBL] [Abstract][Full Text] [Related]
32. Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals. Matta R; Hanna K; Chiron S Sci Total Environ; 2007 Oct; 385(1-3):242-51. PubMed ID: 17662375 [TBL] [Abstract][Full Text] [Related]
33. Mineralization of flumequine in acidic medium by electro-Fenton and photoelectro-Fenton processes. Garcia-Segura S; Garrido JA; Rodríguez RM; Cabot PL; Centellas F; Arias C; Brillas E Water Res; 2012 May; 46(7):2067-76. PubMed ID: 22348999 [TBL] [Abstract][Full Text] [Related]
34. pH-dependence of selenate removal from liquid phase by reductive Fe(II)-Fe(III) hydroxysulfate compound, green rust. Hayashi H; Kanie K; Shinoda K; Muramatsu A; Suzuki S; Sasaki H Chemosphere; 2009 Jul; 76(5):638-43. PubMed ID: 19447467 [TBL] [Abstract][Full Text] [Related]
35. Uptake and release of cerium during Fe-oxide formation and transformation in Fe(II) solutions. Nedel S; Dideriksen K; Christiansen BC; Bovet N; Stipp SL Environ Sci Technol; 2010 Jun; 44(12):4493-8. PubMed ID: 20496931 [TBL] [Abstract][Full Text] [Related]
36. Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: roles of decomposition by the Fenton reaction and adsorption/precipitation. Shimizu A; Tokumura M; Nakajima K; Kawase Y J Hazard Mater; 2012 Jan; 201-202():60-7. PubMed ID: 22119308 [TBL] [Abstract][Full Text] [Related]
37. Reductive dechlorination of carbon tetrachloride in aqueous solutions containing ferrous and copper ions. Maithreepala RA; Doong RA Environ Sci Technol; 2004 Dec; 38(24):6676-84. PubMed ID: 15669327 [TBL] [Abstract][Full Text] [Related]
38. Roles of iron species and pH optimization on sewage sludge conditioning with Fenton's reagent and lime. Yu W; Yang J; Shi Y; Song J; Shi Y; Xiao J; Li C; Xu X; He S; Liang S; Wu X; Hu J Water Res; 2016 May; 95():124-33. PubMed ID: 26986501 [TBL] [Abstract][Full Text] [Related]
39. Kinetic study for phenol degradation by ZVI-assisted Fenton reaction and related iron corrosion investigated by X-ray absorption spectroscopy. Yoon IH; Yoo G; Hong HJ; Kim J; Kim MG; Choi WK; Yang JW Chemosphere; 2016 Feb; 145():409-15. PubMed ID: 26692518 [TBL] [Abstract][Full Text] [Related]
40. Antimony and arsenic partitioning during Fe Karimian N; Johnston SG; Burton ED Chemosphere; 2018 Mar; 195():515-523. PubMed ID: 29277031 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]