BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 19350402)

  • 21. Comparative cytogenetics of hamsters of the genus Allocricetulus argyropulo 1932 (Cricetidae, Rodentia).
    Romanenko SA; Lebedev VS; Serdukova NA; Feoktistova NY; Surov AV; Graphodatsky AS
    Cytogenet Genome Res; 2013; 139(4):258-66. PubMed ID: 23328385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromosome homologies between tsessebe (Damaliscus lunatus) and Chinese muntjac (Muntiacus reevesi) facilitate tracing the evolutionary history of Damaliscus (Bovidae, Antilopinae, Alcelaphini).
    Huang L; Jing M; Nie W; Robinson TJ; Yang F
    Cytogenet Genome Res; 2011; 132(4):264-70. PubMed ID: 21178333
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative chromosome maps between the stone curlew and three ciconiiform species (the grey heron, little egret and crested ibis).
    Wang J; Su W; Hu Y; Li S; O'Brien PCM; Ferguson-Smith MA; Yang F; Nie W
    BMC Ecol Evol; 2022 Mar; 22(1):23. PubMed ID: 35240987
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Karyotypic evolution and phylogenetic relationships in the order Chiroptera as revealed by G-banding comparison and chromosome painting.
    Ao L; Mao X; Nie W; Gu X; Feng Q; Wang J; Su W; Wang Y; Volleth M; Yang F
    Chromosome Res; 2007; 15(3):257-67. PubMed ID: 17310301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis).
    Chi J; Fu B; Nie W; Wang J; Graphodatsky AS; Yang F
    Cytogenet Genome Res; 2005; 108(4):310-6. PubMed ID: 15627750
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phylogenomics of several deer species revealed by comparative chromosome painting with Chinese muntjac paints.
    Huang L; Chi J; Nie W; Wang J; Yang F
    Genetica; 2006 May; 127(1-3):25-33. PubMed ID: 16850210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cross-species chromosome painting in bats from Madagascar: the contribution of Myzopodidae to revealing ancestral syntenies in Chiroptera.
    Richards LR; Rambau RV; Lamb JM; Taylor PJ; Yang F; Schoeman MC; Goodman SM
    Chromosome Res; 2010 Sep; 18(6):635-53. PubMed ID: 20596765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative chromosome painting in six species of Oligoryzomys (Rodentia, Sigmodontinae) and the karyotype evolution of the genus.
    Di-Nizo CB; Ventura K; Ferguson-Smith MA; O'Brien PC; Yonenaga-Yassuda Y; Silva MJ
    PLoS One; 2015; 10(2):e0117579. PubMed ID: 25658766
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromosomal phylogeny and comparative chromosome painting among Neacomys species (Rodentia, Sigmodontinae) from eastern Amazonia.
    Oliveira da Silva W; Pieczarka JC; Rodrigues da Costa MJ; Ferguson-Smith MA; O'Brien PCM; Mendes-Oliveira AC; Rossi RV; Nagamachi CY
    BMC Evol Biol; 2019 Oct; 19(1):184. PubMed ID: 31601183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromosome evolution in bears: reconstructing phylogenetic relationships by cross-species chromosome painting.
    Tian Y; Nie W; Wang J; Ferguson-Smith MA; Yang F
    Chromosome Res; 2004; 12(1):55-63. PubMed ID: 14984102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chromosome Painting in Trogon s. surrucura (Aves, Trogoniformes) Reveals a Karyotype Derived by Chromosomal Fissions, Fusions, and Inversions.
    Degrandi TM; Del Valle Garnero A; O'Brien PCM; Ferguson-Smith MA; Kretschmer R; de Oliveira EHC; Gunski RJ
    Cytogenet Genome Res; 2017; 151(4):208-215. PubMed ID: 28501862
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Karyotype, evolution and phylogenetic reconstruction in Micronycterinae bats with implications for the ancestral karyotype of Phyllostomidae.
    Benathar TCM; Nagamachi CY; Rodrigues LRR; O'Brien PCM; Ferguson-Smith MA; Yang F; Pieczarka JC
    BMC Evol Biol; 2019 May; 19(1):98. PubMed ID: 31064342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of multiple chromosomal rearrangements in the genome of Willisornis vidua using BAC-FISH and chromosome painting on a supposed conserved karyotype.
    Ribas TFA; Pieczarka JC; Griffin DK; Kiazim LG; Nagamachi CY; O Brien PCM; Ferguson-Smith MA; Yang F; Aleixo A; O'Connor RE
    BMC Ecol Evol; 2021 Mar; 21(1):34. PubMed ID: 33653261
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromosome evolution in new world monkeys (Platyrrhini).
    de Oliveira EH; Neusser M; Müller S
    Cytogenet Genome Res; 2012; 137(2-4):259-72. PubMed ID: 22699158
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Defining the ancestral eutherian karyotype: a cladistic interpretation of chromosome painting and genome sequence assembly data.
    Robinson TJ; Ruiz-Herrera A
    Chromosome Res; 2008; 16(8):1133-41. PubMed ID: 19067196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The genome phylogeny of domestic cat, red panda and five mustelid species revealed by comparative chromosome painting and G-banding.
    Nie W; Wang J; O'Brien PC; Fu B; Ying T; Ferguson-Smith MA; Yang F
    Chromosome Res; 2002; 10(3):209-22. PubMed ID: 12067210
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards the delineation of the ancestral eutherian genome organization: comparative genome maps of human and the African elephant (Loxodonta africana) generated by chromosome painting.
    Frönicke L; Wienberg J; Stone G; Adams L; Stanyon R
    Proc Biol Sci; 2003 Jul; 270(1522):1331-40. PubMed ID: 12965023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Karyotypic evolution of hapalomys inferred from chromosome painting: a detailed characterization contributing new insights into the ancestral murinae karyotype.
    Badenhorst D; Dobigny G; Robinson TJ
    Cytogenet Genome Res; 2012; 136(2):83-8. PubMed ID: 22222239
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phylogenomics of the dog and fox family (Canidae, Carnivora) revealed by chromosome painting.
    Graphodatsky AS; Perelman PL; Sokolovskaya NV; Beklemisheva VR; Serdukova NA; Dobigny G; O'Brien SJ; Ferguson-Smith MA; Yang F
    Chromosome Res; 2008; 16(1):129-43. PubMed ID: 18293108
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular cytogenetic insights to the phylogenetic affinities of the giraffe (Giraffa camelopardalis) and pronghorn (Antilocapra americana).
    Cernohorska H; Kubickova S; Kopecna O; Kulemzina AI; Perelman PL; Elder FF; Robinson TJ; Graphodatsky AS; Rubes J
    Chromosome Res; 2013 Aug; 21(5):447-60. PubMed ID: 23896647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.