These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 19350412)

  • 41. Selective inhibition of methanogenesis to enhance ethanol and n-butyrate production through acetate reduction in mixed culture fermentation.
    Steinbusch KJ; Arvaniti E; Hamelers HV; Buisman CJ
    Bioresour Technol; 2009 Jul; 100(13):3261-7. PubMed ID: 19297147
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation of glycerol metabolism in Enterobacter aerogenes NBRC12010 under electrochemical conditions.
    Hatayama K; Yagishita T
    Appl Microbiol Biotechnol; 2009 Jun; 83(4):749-56. PubMed ID: 19352646
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Studies on soluble cytochromes in Enterobacteriaceae. V. Nitrite-dependent gas evolution in cells containing cytochrome c-552.
    Fujita T; Sato Y
    J Biochem; 1967 Aug; 62(2):230-8. PubMed ID: 4869972
    [No Abstract]   [Full Text] [Related]  

  • 44. Variable ammonia production among smooth and rough strains of Pseudomonas pseudomallei: resemblance to bacteriocin production.
    Rogul M; Carr SR
    J Bacteriol; 1972 Oct; 112(1):372-80. PubMed ID: 4562401
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Alkalibacterium thalassium sp. nov., Alkalibacterium pelagium sp. nov., Alkalibacterium putridalgicola sp. nov. and Alkalibacterium kapii sp. nov., slightly halophilic and alkaliphilic marine lactic acid bacteria isolated from marine organisms and salted foods collected in Japan and Thailand.
    Ishikawa M; Tanasupawat S; Nakajima K; Kanamori H; Ishizaki S; Kodama K; Okamoto-Kainuma A; Koizumi Y; Yamamoto Y; Yamasato K
    Int J Syst Evol Microbiol; 2009 May; 59(Pt 5):1215-26. PubMed ID: 19406822
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An electron-flow model can predict complex redox reactions in mixed-culture fermentative bioH2: microbial ecology evidence.
    Lee HS; Krajmalinik-Brown R; Zhang H; Rittmann BE
    Biotechnol Bioeng; 2009 Nov; 104(4):687-97. PubMed ID: 19530077
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitrogen addition influences formation of aroma compounds, volatile acidity and ethanol in nitrogen deficient media fermented by Saccharomyces cerevisiae wine strains.
    Barbosa C; Falco V; Mendes-Faia A; Mendes-Ferreira A
    J Biosci Bioeng; 2009 Aug; 108(2):99-104. PubMed ID: 19619854
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain.
    Bellissimi E; van Dijken JP; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2009 May; 9(3):358-64. PubMed ID: 19416101
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydrogen peroxide-dependent conversion of nitrite to nitrate as a crucial feature of bovine milk catalase.
    Silanikove N; Shapiro F; Silanikove M; Merin U; Leitner G
    J Agric Food Chem; 2009 Sep; 57(17):8018-25. PubMed ID: 19722711
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of nitrate and acetate availability on chloroform production during carbon tetrachloride destruction.
    Sherwood JL; Petersen JN; Skeen RS; Valentine NB
    Biotechnol Bioeng; 1996 Sep; 51(5):551-7. PubMed ID: 18629819
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transformation of ethyl alcohol to ethyl nitrite in acidified saliva: possibility of its occurrence in the stomach.
    Takahama U; Tanaka M; Hirota S
    Arch Biochem Biophys; 2008 Jul; 475(2):135-9. PubMed ID: 18471427
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of the methane-inhibitors nitrate, nitroethane, lauric acid, Lauricidin and the Hawaiian marine algae Chaetoceros on ruminal fermentation in vitro.
    Bozic AK; Anderson RC; Carstens GE; Ricke SC; Callaway TR; Yokoyama MT; Wang JK; Nisbet DJ
    Bioresour Technol; 2009 Sep; 100(17):4017-25. PubMed ID: 19362827
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Reduction of nitrite at the expense of molecular hydrogen by Desulfovibrio desulfuricans and other bacterial species].
    SENEZ JC; PICHINOTY F
    Bull Soc Chim Biol (Paris); 1958; 40(12):2099-117. PubMed ID: 13629248
    [No Abstract]   [Full Text] [Related]  

  • 55. Characterization of a microbial community capable of nitrification at cold temperature.
    Ducey TF; Vanotti MB; Shriner AD; Szogi AA; Ellison AQ
    Bioresour Technol; 2010 Jan; 101(2):491-500. PubMed ID: 19734046
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Removal of harmful admixtures from a surrogate atmospheric condensate of a closed habitat with the help of a cultivated bacterial association].
    Nazarov NV; Doronina NV; Trotsenko IuA; Malykh EIu; Bitsadze NA
    Aviakosm Ekolog Med; 2005; 39(2):49-54. PubMed ID: 16078425
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus.
    Ramírez-Bahena MH; Peix A; Rivas R; Camacho M; Rodríguez-Navarro DN; Mateos PF; Martínez-Molina E; Willems A; Velázquez E
    Int J Syst Evol Microbiol; 2009 Aug; 59(Pt 8):1929-34. PubMed ID: 19567584
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The oxygen level determines the fermentation pattern in Kluyveromyces lactis.
    Merico A; Galafassi S; Piskur J; Compagno C
    FEMS Yeast Res; 2009 Aug; 9(5):749-56. PubMed ID: 19500150
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel variant of ferredoxin-dependent sulfite reductase having preferred substrate specificity for nitrite in the unicellular red alga Cyanidioschyzon merolae.
    Sekine K; Sakakibara Y; Hase T; Sato N
    Biochem J; 2009 Sep; 423(1):91-8. PubMed ID: 19622064
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Elimination of by-product formation during production of 1,3-propanediol in Klebsiella pneumoniae by inactivation of glycerol oxidative pathway.
    Seo MY; Seo JW; Heo SY; Baek JO; Rairakhwada D; Oh BR; Seo PS; Choi MH; Kim CH
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):527-34. PubMed ID: 19352645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.