These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19350413)

  • 1. What you get out of high-time resolution electron paramagnetic resonance: example from photosynthetic bacteria.
    Kothe G; Thurnauer MC
    Photosynth Res; 2009; 102(2-3):349-65. PubMed ID: 19350413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the charge separated state P865(+)Q(A)- in the photosynthetic reaction centers of Rhodobacter sphaeroides by quantum beat oscillations and high-field electron paramagnetic resonance: evidence for light-induced Q(A)- reorientation.
    Heinen U; Utschig LM; Poluektov OG; Link G; Ohmes E; Kothe G
    J Am Chem Soc; 2007 Dec; 129(51):15935-46. PubMed ID: 18052250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. B-branch electron transfer in the photosynthetic reaction center of a Rhodobacter sphaeroides quadruple mutant. Q- and W-band electron paramagnetic resonance studies of triplet and radical-pair cofactor states.
    Marchanka A; Savitsky A; Lubitz W; Möbius K; van Gastel M
    J Phys Chem B; 2010 Nov; 114(45):14364-72. PubMed ID: 20345158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the P700(+ )A1(-) radical pair intermediate in photosystem I by high time resolution multifrequency electron paramagnetic resonance: analysis of quantum beat oscillations.
    Link G; Berthold T; Bechtold M; Weidner JU; Ohmes E; Tang J; Poluektov O; Utschig L; Schlesselman SL; Thurnauer MC; Kothe G
    J Am Chem Soc; 2001 May; 123(18):4211-22. PubMed ID: 11457186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron-nuclear and electron-electron double resonance spectroscopies show that the primary quinone acceptor QA in reaction centers from photosynthetic bacteria Rhodobacter sphaeroides remains in the same orientation upon light-induced reduction.
    Flores M; Savitsky A; Paddock ML; Abresch EC; Dubinskii AA; Okamura MY; Lubitz W; Möbius K
    J Phys Chem B; 2010 Dec; 114(50):16894-901. PubMed ID: 21090818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orientation-resolving pulsed electron dipolar high-field EPR spectroscopy on disordered solids: I. Structure of spin-correlated radical pairs in bacterial photosynthetic reaction centers.
    Savitsky A; Dubinskii AA; Flores M; Lubitz W; Möbius K
    J Phys Chem B; 2007 Jun; 111(22):6245-62. PubMed ID: 17497913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EPR of Type I photosynthetic reaction centers.
    Golbeck JH; van der Est A
    Methods Enzymol; 2022; 666():413-450. PubMed ID: 35465926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the electron transfer pathways in photosystem I by high-time-resolution electron paramagnetic resonance: observation of the B-side radical pair P700(+)A1B(-) in whole cells of the deuterated green alga Chlamydomonas reinhardtii at cryogenic temperatures.
    Berthold T; von Gromoff ED; Santabarbara S; Stehle P; Link G; Poluektov OG; Heathcote P; Beck CF; Thurnauer MC; Kothe G
    J Am Chem Soc; 2012 Mar; 134(12):5563-76. PubMed ID: 22352450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron paramagnetic resonance studies of zinc-substituted reaction centers from Rhodopseudomonas viridis.
    Gardiner AT; Zech SG; MacMillan F; Käss H; Bittl R; Schlodder E; Lendzian F; Lubitz W
    Biochemistry; 1999 Sep; 38(36):11773-87. PubMed ID: 10512634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron paramagnetic resonance investigation of photosynthetic reaction centers from Rhodobacter sphaeroides R-26 in which Fe2+ was replaced by Cu2+. Determination of hyperfine interactions and exchange and dipole-dipole interactions between Cu2+ and QA-.
    Calvo R; Passeggi MC; Isaacson RA; Okamura MY; Feher G
    Biophys J; 1990 Jul; 58(1):149-65. PubMed ID: 2166597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Sensing of Electron Transfer Pathways in Natural Photosynthesis Using Time-Resolved High-Field Electron Paramagnetic Resonance/Electron-Nuclear Double Resonance Spectroscopy.
    Poluektov OG; Utschig LM
    J Phys Chem B; 2021 Apr; 125(16):4025-4030. PubMed ID: 33877826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural organization in photosynthetic proteins as studied by high-field EPR of spin-correlated radical pair states.
    Link G; Poluektov OG; Utschig LM; Lalevée J; Yago T; Weidner JU; Thurnauer MC; Kothe G
    Magn Reson Chem; 2005 Nov; 43 Spec no.():S103-9. PubMed ID: 16235208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron transfer pathways and protein response to charge separation in photosynthetic reaction centers: time-resolved high-field ENDOR of the spin-correlated radical pair P865(+)QA(-).
    Poluektov OG; Utschig LM; Dubinskij AA; Thurnauer MC
    J Am Chem Soc; 2005 Mar; 127(11):4049-59. PubMed ID: 15771542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy.
    Ishara Silva K; Jagannathan B; Golbeck JH; Lakshmi KV
    Biochim Biophys Acta; 2016 May; 1857(5):548-556. PubMed ID: 26334844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature interquinone electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides and Blastochloris viridis: characterization of Q(B)- states by high-frequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR).
    Utschig LM; Thurnauer MC; Tiede DM; Poluektov OG
    Biochemistry; 2005 Nov; 44(43):14131-42. PubMed ID: 16245929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulsed EPR spectroscopy on short-lived intermediates in Photosystem I.
    Bittl R; Zech SG
    Biochim Biophys Acta; 2001 Oct; 1507(1-3):194-211. PubMed ID: 11687215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Quantum yield formation of triplet state and recombination luminescence of the primary electron donor in reaction centers of photosynthetic bacteria].
    Klevanik AV; Shuvalov VA
    Mol Biol (Mosk); 1981; 15(3):680-9. PubMed ID: 7254213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct measurement of photoinduced charge separation distances in donor-acceptor systems for artificial photosynthesis using OOP-ESEEM.
    Carmieli R; Mi Q; Ricks AB; Giacobbe EM; Mickley SM; Wasielewski MR
    J Am Chem Soc; 2009 Jun; 131(24):8372-3. PubMed ID: 19476357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing subtle coordination changes in the iron-quinone complex of photosystem II during charge separation, by the use of NO.
    Goussias C; Deligiannakis Y; Sanakis Y; Ioannidis N; Petrouleas V
    Biochemistry; 2002 Dec; 41(51):15212-23. PubMed ID: 12484759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient EPR: using spin polarization in sequential radical pairs to study electron transfer in photosynthesis.
    van der Est A
    Photosynth Res; 2009; 102(2-3):335-47. PubMed ID: 19255871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.