BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 19350540)

  • 1. A boundary element method/Brownian dynamics approach for simulating DNA electrophoresis in electrically insulating microfabricated devices.
    Cho J; Kenward M; Dorfman KD
    Electrophoresis; 2009 May; 30(9):1482-9. PubMed ID: 19350540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Brownian dynamics-finite element method for simulating DNA electrophoresis in nonhomogeneous electric fields.
    Kim JM; Doyle PS
    J Chem Phys; 2006 Aug; 125(7):074906. PubMed ID: 16942379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brownian dynamics simulations of electrophoretic DNA separations in a sparse ordered post array.
    Cho J; Dorfman KD
    J Chromatogr A; 2010 Aug; 1217(34):5522-8. PubMed ID: 20650462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of direct current dielectrophoresis on the trajectory of a non-conducting colloidal sphere in a bent pore.
    House DL; Luo H
    Electrophoresis; 2011 Nov; 32(22):3277-85. PubMed ID: 22028275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and numerical simulation of a DNA electrophoretic stretching device.
    Kim JM; Doyle PS
    Lab Chip; 2007 Feb; 7(2):213-25. PubMed ID: 17268624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophoretic collision of a DNA molecule with a small elliptical obstacle.
    Cho J; Kumar S; Dorfman KD
    Electrophoresis; 2010 Mar; 31(5):860-7. PubMed ID: 20191551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of DNA electrophoresis in systems of large number of solvent particles by coarse-grained hybrid molecular dynamics approach.
    Wang R; Wang JS; Liu GR; Han J; Chen YZ
    J Comput Chem; 2009 Mar; 30(4):505-13. PubMed ID: 18773412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solving the ECG forward problem by means of standard h- and h-hierarchical adaptive linear boundary element method: comparison with two refinement schemes.
    Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S
    IEEE Trans Biomed Eng; 2009 May; 56(5):1454-64. PubMed ID: 19272882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solving the ECG forward problem by means of a meshless finite element method.
    Li ZS; Zhu SA; He B
    Phys Med Biol; 2007 Jul; 52(13):N287-96. PubMed ID: 17664567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous-time random walk models of DNA electrophoresis in a post array: part I. Evaluation of existing models.
    Olson DW; Ou J; Tian M; Dorfman KD
    Electrophoresis; 2011 Feb; 32(5):573-80. PubMed ID: 21298673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boundary element solution of the linear Poisson-Boltzmann equation and a multipole method for the rapid calculation of forces on macromolecules in solution.
    Bordner AJ; Huber GA
    J Comput Chem; 2003 Feb; 24(3):353-67. PubMed ID: 12548727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved quasi-static finite-difference scheme for induced field evaluation based on the biconjugate gradient method.
    Wang H; Liu F; Trakic A; Crozier S
    IEEE Trans Biomed Eng; 2008 Jul; 55(7):1800-8. PubMed ID: 18595798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computation of electrostatic forces between solvated molecules determined by the Poisson-Boltzmann equation using a boundary element method.
    Lu B; Zhang D; McCammon JA
    J Chem Phys; 2005 Jun; 122(21):214102. PubMed ID: 15974723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of DNA electrophoresis through microstructures.
    Maleki-Jirsaraei N; Sarbolouki MN; Rouhani S
    Electrophoresis; 2007 Feb; 28(3):301-8. PubMed ID: 17191278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution.
    Lu B; Zhou YC; Huber GA; Bond SD; Holst MJ; McCammon JA
    J Chem Phys; 2007 Oct; 127(13):135102. PubMed ID: 17919055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of embedded sub-micron pillar arrays in microfluidic channels on large DNA electrophoresis.
    Chan YC; Zohar Y; Lee YK
    Electrophoresis; 2009 Sep; 30(18):3242-9. PubMed ID: 19722207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brownian dynamics simulations of single-wall carbon nanotube separation by type using dielectrophoresis.
    Mendes MJ; Schmidt HK; Pasquali M
    J Phys Chem B; 2008 Jun; 112(25):7467-77. PubMed ID: 18512886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brownian dynamics simulations with stiff finitely extensible nonlinear elastic-Fraenkel springs as approximations to rods in bead-rod models.
    Hsieh CC; Jain S; Larson RG
    J Chem Phys; 2006 Jan; 124(4):044911. PubMed ID: 16460216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA manipulation by means of insulator-based dielectrophoresis employing direct current electric fields.
    Gallo-Villanueva RC; Rodríguez-López CE; Díaz-de-la-Garza RI; Reyes-Betanzo C; Lapizco-Encinas BH
    Electrophoresis; 2009 Dec; 30(24):4195-205. PubMed ID: 20013902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA electrophoresis in confined, periodic geometries: a new lakes-straits model.
    Laachi N; Dorfman KD
    J Chem Phys; 2010 Dec; 133(23):234104. PubMed ID: 21186855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.