These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 19350625)
1. Novel method for fabrication of skeletal muscle construct from the C2C12 myoblast cell line using serum-free medium AIM-V. Fujita H; Shimizu K; Nagamori E Biotechnol Bioeng; 2009 Aug; 103(5):1034-41. PubMed ID: 19350625 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of serum-free differentiation conditions for C2C12 myoblast cells assessed as to active tension generation capability. Fujita H; Endo A; Shimizu K; Nagamori E Biotechnol Bioeng; 2010 Dec; 107(5):894-901. PubMed ID: 20635352 [TBL] [Abstract][Full Text] [Related]
3. The influence of serum-free culture conditions on skeletal muscle differentiation in a tissue-engineered model. Gawlitta D; Boonen KJ; Oomens CW; Baaijens FP; Bouten CV Tissue Eng Part A; 2008 Jan; 14(1):161-71. PubMed ID: 18333814 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of scaffold-free contractile skeletal muscle tissue using magnetite-incorporated myogenic C2C12 cells. Fujita H; Shimizu K; Yamamoto Y; Ito A; Kamihira M; Nagamori E J Tissue Eng Regen Med; 2010 Aug; 4(6):437-43. PubMed ID: 20084621 [TBL] [Abstract][Full Text] [Related]
5. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells. Sato M; Ito A; Kawabe Y; Nagamori E; Kamihira M J Biosci Bioeng; 2011 Sep; 112(3):273-8. PubMed ID: 21646045 [TBL] [Abstract][Full Text] [Related]
6. Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives. Shimizu K; Fujita H; Nagamori E Biotechnol Bioeng; 2009 Jun; 103(3):631-8. PubMed ID: 19189396 [TBL] [Abstract][Full Text] [Related]
7. Regulating fibrinolysis to engineer skeletal muscle from the C2C12 cell line. Khodabukus A; Baar K Tissue Eng Part C Methods; 2009 Sep; 15(3):501-11. PubMed ID: 19191517 [TBL] [Abstract][Full Text] [Related]
8. Characterization of human myoblast cultures for tissue engineering. Stern-Straeter J; Bran G; Riedel F; Sauter A; Hörmann K; Goessler UR Int J Mol Med; 2008 Jan; 21(1):49-56. PubMed ID: 18097615 [TBL] [Abstract][Full Text] [Related]
9. Novel method for measuring active tension generation by C2C12 myotube using UV-crosslinked collagen film. Fujita H; Shimizu K; Nagamori E Biotechnol Bioeng; 2010 Jun; 106(3):482-9. PubMed ID: 20178119 [TBL] [Abstract][Full Text] [Related]
10. Serum-free culture conditions for analysis of secretory proteinases during myogenic differentiation of mouse C2C12 myoblasts. Goto S; Miyazaki K; Funabiki T; Yasumitsu H Anal Biochem; 1999 Aug; 272(2):135-42. PubMed ID: 10415081 [TBL] [Abstract][Full Text] [Related]
11. Preparation of artificial skeletal muscle tissues by a magnetic force-based tissue engineering technique. Yamamoto Y; Ito A; Kato M; Kawabe Y; Shimizu K; Fujita H; Nagamori E; Kamihira M J Biosci Bioeng; 2009 Dec; 108(6):538-43. PubMed ID: 19914590 [TBL] [Abstract][Full Text] [Related]
12. Micropatterning of single myotubes on a thermoresponsive culture surface using elastic stencil membranes for single-cell analysis. Shimizu K; Fujita H; Nagamori E J Biosci Bioeng; 2010 Feb; 109(2):174-8. PubMed ID: 20129103 [TBL] [Abstract][Full Text] [Related]
13. Functional evaluation of artificial skeletal muscle tissue constructs fabricated by a magnetic force-based tissue engineering technique. Yamamoto Y; Ito A; Fujita H; Nagamori E; Kawabe Y; Kamihira M Tissue Eng Part A; 2011 Jan; 17(1-2):107-14. PubMed ID: 20672996 [TBL] [Abstract][Full Text] [Related]
14. High-density seeding of myocyte cells for cardiac tissue engineering. Radisic M; Euloth M; Yang L; Langer R; Freed LE; Vunjak-Novakovic G Biotechnol Bioeng; 2003 May; 82(4):403-14. PubMed ID: 12632397 [TBL] [Abstract][Full Text] [Related]
16. A novel method of encapsulating and cultivating adherent mammalian cells within collagen microcarriers. Wu TJ; Huang HH; Hsu YM; Lyu SR; Wang YJ Biotechnol Bioeng; 2007 Oct; 98(3):578-85. PubMed ID: 17421039 [TBL] [Abstract][Full Text] [Related]
17. Design and fabrication of heart muscle using scaffold-based tissue engineering. Blan NR; Birla RK J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281 [TBL] [Abstract][Full Text] [Related]
18. Synergy between myogenic and non-myogenic cells in a 3D tissue-engineered craniofacial skeletal muscle construct. Brady MA; Lewis MP; Mudera V J Tissue Eng Regen Med; 2008 Oct; 2(7):408-17. PubMed ID: 18720445 [TBL] [Abstract][Full Text] [Related]
19. Modulation of alignment and differentiation of skeletal myoblasts by biomimetic materials. Palamà IE; Coluccia AM; Gigli G; Riehle M Integr Biol (Camb); 2012 Oct; 4(10):1299-309. PubMed ID: 22899167 [TBL] [Abstract][Full Text] [Related]
20. The stimulation of myoblast differentiation by electrically conductive sub-micron fibers. Jun I; Jeong S; Shin H Biomaterials; 2009 Apr; 30(11):2038-47. PubMed ID: 19147222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]