These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 19350889)

  • 1. Use of life-cycle analysis to support solid waste management planning for Delaware.
    Kaplan PO; Ranjithan SR; Barlaz MA
    Environ Sci Technol; 2009 Mar; 43(5):1264-70. PubMed ID: 19350889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The best MSW treatment option by considering greenhouse gas emissions reduction: a case study in Georgia.
    Tayyeba O; Olsson M; Brandt N
    Waste Manag Res; 2011 Aug; 29(8):823-33. PubMed ID: 21382876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid Waste Management Policy Implications on Waste Process Choices and Systemwide Cost and Greenhouse Gas Performance.
    Jaunich MK; Levis JW; DeCarolis JF; Barlaz MA; Ranjithan SR
    Environ Sci Technol; 2019 Feb; 53(4):1766-1775. PubMed ID: 30633859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic exploration of efficient strategies to manage solid waste in U.S. municipalities: perspectives from the solid waste optimization life-cycle framework (SWOLF).
    Levis JW; Barlaz MA; Decarolis JF; Ranjithan SR
    Environ Sci Technol; 2014 Apr; 48(7):3625-31. PubMed ID: 24601652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China.
    Zhao W; van der Voet E; Zhang Y; Huppes G
    Sci Total Environ; 2009 Feb; 407(5):1517-26. PubMed ID: 19068268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GHG emission control and solid waste management for megacities with inexact inputs: a case study in Beijing, China.
    Lu H; Sun S; Ren L; He L
    J Hazard Mater; 2015 Mar; 284():92-102. PubMed ID: 25463222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pomace waste management scenarios in Québec--impact on greenhouse gas emissions.
    Gassara F; Brar SK; Pelletier F; Verma M; Godbout S; Tyagi RD
    J Hazard Mater; 2011 Sep; 192(3):1178-85. PubMed ID: 21733627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle and economic assessment of source-separated MSW collection with regard to greenhouse gas emissions: a case study in China.
    Dong J; Ni M; Chi Y; Zou D; Fu C
    Environ Sci Pollut Res Int; 2013 Aug; 20(8):5512-24. PubMed ID: 23436063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications of municipal solid waste management on greenhouse gas emissions in Malaysia and the way forward.
    Michel Devadoss PS; Agamuthu P; Mehran SB; Santha C; Fauziah SH
    Waste Manag; 2021 Jan; 119():135-144. PubMed ID: 33059163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy, greenhouse gas, and cost reductions for municipal recycling systems.
    Chester M; Martin E; Sathaye N
    Environ Sci Technol; 2008 Mar; 42(6):2142-9. PubMed ID: 18409650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues.
    Kollikkathara N; Feng H; Yu D
    Waste Manag; 2010 Nov; 30(11):2194-203. PubMed ID: 20547450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Siting and routing assessment for solid waste management under uncertainty using the grey mini-max regret criterion.
    Chang NB; Davila E
    Environ Manage; 2006 Oct; 38(4):654-72. PubMed ID: 16941079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An inexact dynamic optimization model for municipal solid waste management in association with greenhouse gas emission control.
    Lu HW; Huang GH; He L; Zeng GM
    J Environ Manage; 2009 Jan; 90(1):396-409. PubMed ID: 18096299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Greenhouse gas emissions from municipal solid waste management in Vientiane, Lao PDR.
    Babel S; Vilaysouk X
    Waste Manag Res; 2016 Jan; 34(1):30-7. PubMed ID: 26608899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid waste treatment as a high-priority and low-cost alternative for greenhouse gas mitigation.
    Ayalon O; Avnimelech Y; Shechter M
    Environ Manage; 2001 May; 27(5):697-704. PubMed ID: 11334157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mini-review of waste sector greenhouse gas and short-lived climate pollutant emissions in Tyre Caza, Lebanon, using the Solid Waste Emissions Estimation Tool ('SWEET').
    Alexander Stege G; James Law H; Ramola A; Mazo-Nix S
    Waste Manag Res; 2022 Aug; 40(8):1129-1142. PubMed ID: 35212577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greenhouse gas emissions from different municipal solid waste management scenarios in China: Based on carbon and energy flow analysis.
    Liu Y; Sun W; Liu J
    Waste Manag; 2017 Oct; 68():653-661. PubMed ID: 28642075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Municipal solid waste management planning considering greenhouse gas emission trading under fuzzy environment.
    Zhang X; Huang G
    J Environ Manage; 2014 Mar; 135():11-8. PubMed ID: 24508842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.