BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 19350936)

  • 1. Combined supercritical and subcritical process for cellulose hydrolysis to fermentable hexoses.
    Zhao Y; Lu WJ; Wang HT; Li D
    Environ Sci Technol; 2009 Mar; 43(5):1565-70. PubMed ID: 19350936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermentable hexose production from corn stalks and wheat straw with combined supercritical and subcritical hydrothermal technology.
    Zhao Y; Lu WJ; Wang HT; Yang JL
    Bioresour Technol; 2009 Dec; 100(23):5884-9. PubMed ID: 19616938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of supercritical phase and combined supercritical/subcritical conversion of lignocellulose for hexose production by using a flow reaction system.
    Zhao Y; Lu WJ; Wu HY; Liu JW; Wang HT
    Bioresour Technol; 2012 Dec; 126():391-6. PubMed ID: 22459955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of Biomass to Organic Acids by Liquefaction Reactions Under Subcritical Conditions.
    Yüksel Özşen A
    Front Chem; 2020; 8():24. PubMed ID: 32117866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkaline subcritical-water treatment and alkaline heat treatment for the increase in biodegradability of newsprint waste.
    Fox MH; Noike T; Ohki T
    Water Sci Technol; 2003; 48(4):77-84. PubMed ID: 14531425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose pretreatment in subcritical water: effect of temperature on molecular structure and enzymatic reactivity.
    Kumar S; Gupta R; Lee YY; Gupta RB
    Bioresour Technol; 2010 Feb; 101(4):1337-47. PubMed ID: 19818604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of Japanese red pine wood (Pinus densiflora) into valuable chemicals under subcritical water conditions.
    Asghari FS; Yoshida H
    Carbohydr Res; 2010 Jan; 345(1):124-31. PubMed ID: 19892325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcritical and supercritical technology for the production of second generation bioethanol.
    Rostagno MA; Prado JM; Mudhoo A; Santos DT; Forster-Carneiro T; Meireles MA
    Crit Rev Biotechnol; 2015; 35(3):302-12. PubMed ID: 24494703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrolysis kinetics of tulip tree xylan in hot compressed water.
    Yoon J; Lee HW; Sim S; Myint AA; Park HJ; Lee YW
    Bioresour Technol; 2016 Aug; 214():679-685. PubMed ID: 27208738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Severity factor coefficients for subcritical liquid hot water pretreatment of hardwood chips.
    Kim Y; Kreke T; Mosier NS; Ladisch MR
    Biotechnol Bioeng; 2014 Feb; 111(2):254-63. PubMed ID: 23893564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid hot water pretreatment of cellulosic biomass.
    Kim Y; Hendrickson R; Mosier NS; Ladisch MR
    Methods Mol Biol; 2009; 581():93-102. PubMed ID: 19768618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolysis of bamboo biomass by subcritical water treatment.
    Mohan M; Banerjee T; Goud VV
    Bioresour Technol; 2015 Sep; 191():244-52. PubMed ID: 26000834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcritical water hydrolysis of rice straw for reducing sugar production with focus on degradation by-products and kinetic analysis.
    Lin R; Cheng J; Ding L; Song W; Qi F; Zhou J; Cen K
    Bioresour Technol; 2015 Jun; 186():8-14. PubMed ID: 25795997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolysis of ginger bagasse starch in subcritical water and carbon dioxide.
    Moreschi SR; Petenate AJ; Meireles MA
    J Agric Food Chem; 2004 Mar; 52(6):1753-8. PubMed ID: 15030241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis.
    Benazzi T; Calgaroto S; Astolfi V; Dalla Rosa C; Oliveira JV; Mazutti MA
    Enzyme Microb Technol; 2013 Apr; 52(4-5):247-50. PubMed ID: 23540926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subcritical hydrothermal pretreatment of olive mill solid waste for biofuel production.
    Abu Tayeh H; Levy-Shalev O; Azaizeh H; Dosoretz CG
    Bioresour Technol; 2016 Jan; 199():164-172. PubMed ID: 26362463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated green process: Subcritical water, enzymatic hydrolysis, and fermentation, for biohydrogen production from coconut husk.
    Muharja M; Junianti F; Ranggina D; Nurtono T; Widjaja A
    Bioresour Technol; 2018 Feb; 249():268-275. PubMed ID: 29054055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production.
    Li H; Kim NJ; Jiang M; Kang JW; Chang HN
    Bioresour Technol; 2009 Jul; 100(13):3245-51. PubMed ID: 19289273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficacy of a hot washing process for pretreated yellow poplar to enhance bioethanol production.
    Nagle NJ; Elander RT; Newman MM; Rohrback BT; Ruiz RO; Torget RW
    Biotechnol Prog; 2002; 18(4):734-8. PubMed ID: 12153306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcritical carbon dioxide-water hydrolysis of sugarcane bagasse pith for reducing sugars production.
    Liang J; Chen X; Wang L; Wei X; Wang H; Lu S; Li Y
    Bioresour Technol; 2017 Mar; 228():147-155. PubMed ID: 28061397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.