These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 19350985)
1. Inactivation of Yersinia pseudotuberculosis, as a surrogate for Yersinia pestis, by liquid biocides in the presence of food residue. Hilgren J; Swanson KM; Diez-Gonzalez F; Cords B J Food Prot; 2009 Feb; 72(2):392-8. PubMed ID: 19350985 [TBL] [Abstract][Full Text] [Related]
2. Inactivation of Bacillus anthracis spores by liquid biocides in the presence of food residue. Hilgren J; Swanson KM; Diez-Gonzalez F; Cords B Appl Environ Microbiol; 2007 Oct; 73(20):6370-7. PubMed ID: 17720823 [TBL] [Abstract][Full Text] [Related]
3. Inactivation of Yersinia pseudotuberculosis 197 and Francisella tularensis LVS in beverages by high pressure processing. Schlesser JE; Parisi B J Food Prot; 2009 Jan; 72(1):165-8. PubMed ID: 19205479 [TBL] [Abstract][Full Text] [Related]
4. Susceptibilities of Bacillus subtilis, Bacillus cereus, and avirulent Bacillus anthracis spores to liquid biocides. Hilgren J; Swanson KM; Diez-Gonzalez F; Cords B J Food Prot; 2009 Feb; 72(2):360-4. PubMed ID: 19350981 [TBL] [Abstract][Full Text] [Related]
5. Inactivation of Bacillus anthracis spores by a combination of biocides and heating under high-temperature short-time pasteurization conditions. Xu S; Labuza TP; Diez-Gonzalez F Appl Environ Microbiol; 2008 Jun; 74(11):3336-41. PubMed ID: 18390680 [TBL] [Abstract][Full Text] [Related]
6. Ultraviolet inactivation kinetics of Escherichia coli and Yersinia pseudotuberculosis in annular reactors. Ye Z; Koutchma T; Parisi B; Larkin J; Forney LJ J Food Sci; 2007 Jun; 72(5):E271-8. PubMed ID: 17995726 [TBL] [Abstract][Full Text] [Related]
7. Inactivation of avirulent Yersinia pestis on food and food contact surfaces by ultraviolet light and freezing. Sommers CH; Sheen S Food Microbiol; 2015 Sep; 50():1-4. PubMed ID: 25998808 [TBL] [Abstract][Full Text] [Related]
8. Validation of cooking times and temperatures for thermal inactivation of Yersinia pestis strains KIM5 and CDC-A1122 in irradiated ground beef. Porto-Fett AC; Juneja VK; Tamplin ML; Luchansky JB J Food Prot; 2009 Mar; 72(3):564-71. PubMed ID: 19343945 [TBL] [Abstract][Full Text] [Related]
9. Effects of peroxyacetic acid, acidified sodium chlorite or lactic acid solutions on the microflora of chilled beef carcasses. Gill CO; Badoni M Int J Food Microbiol; 2004 Feb; 91(1):43-50. PubMed ID: 14967559 [TBL] [Abstract][Full Text] [Related]
10. Efficacy of detergents and fresh produce disinfectants against microorganisms associated with mixed raw vegetables. Samadi N; Abadian N; Bakhtiari D; Fazeli MR; Jamalifar H J Food Prot; 2009 Jul; 72(7):1486-90. PubMed ID: 19681275 [TBL] [Abstract][Full Text] [Related]
11. Yersinia pseudotuberculosis and Yersinia pestis are more resistant to bactericidal cationic peptides than Yersinia enterocolitica. Bengoechea JA; Lindner B; Seydel U; Ramón D; Ignacio M Microbiology (Reading); 1998 Jun; 144 ( Pt 6)():1509-1515. PubMed ID: 9639921 [TBL] [Abstract][Full Text] [Related]
12. Growth and Biofilm Formation by Listeria monocytogenes in Catfish Mucus Extract on Four Food Contact Surfaces at 22 and 10°C and Their Reduction by Commercial Disinfectants. Dhowlaghar N; Abeysundara PA; Nannapaneni R; Schilling MW; Chang S; Cheng WH; Sharma CS J Food Prot; 2018 Jan; 81(1):59-67. PubMed ID: 29257728 [TBL] [Abstract][Full Text] [Related]
13. Efficacy of chitosan, carvacrol, and a hydrogen peroxide-based biocide against foodborne microorganisms in suspension and adhered to stainless steel. Knowles J; Roller S J Food Prot; 2001 Oct; 64(10):1542-8. PubMed ID: 11601703 [TBL] [Abstract][Full Text] [Related]
14. Hot water postprocess pasteurization of cook-in-bag turkey breast treated with and without potassium lactate and sodium diacetate and acidified sodium chlorite for control of Listeria monocytogenes. Luchansky JB; Cocoma G; Call JE J Food Prot; 2006 Jan; 69(1):39-46. PubMed ID: 16416899 [TBL] [Abstract][Full Text] [Related]
15. Development of multitarget real-time PCR for the rapid, specific, and sensitive detection of Yersinia pestis in milk and ground beef. Amoako KK; Goji N; Macmillan T; Said KB; Druhan S; Tanaka E; Thomas EG J Food Prot; 2010 Jan; 73(1):18-25. PubMed ID: 20051199 [TBL] [Abstract][Full Text] [Related]
16. Vapour-phase hydrogen peroxide inactivates Yersinia pestis dried on polymers, steel, and glass surfaces. Rogers JV; Richter WR; Shaw MQ; Choi YW Lett Appl Microbiol; 2008 Oct; 47(4):279-85. PubMed ID: 19241520 [TBL] [Abstract][Full Text] [Related]
17. Effectiveness of sanitation with quaternary ammonium compound or chlorine on stainless steel and other domestic food-preparation surfaces. Frank JF; Chmielewski RA J Food Prot; 1997 Jan; 60(1):43-7. PubMed ID: 10465039 [TBL] [Abstract][Full Text] [Related]
18. Effect of simulated spray chilling with chemical solutions on acid-habituated and non-acid-habituated Escherichia coli O157:H7 cells attached to beef carcass tissue. Stopforth JD; Yoon Y; Belk KE; Scanga JA; Kendall PA; Smith GC; Sofos JN J Food Prot; 2004 Oct; 67(10):2099-106. PubMed ID: 15508617 [TBL] [Abstract][Full Text] [Related]
19. The response regulator PhoP negatively regulates Yersinia pseudotuberculosis and Yersinia pestis biofilms. Sun YC; Koumoutsi A; Darby C FEMS Microbiol Lett; 2009 Jan; 290(1):85-90. PubMed ID: 19025559 [TBL] [Abstract][Full Text] [Related]
20. Inactivation of avirulent Yersinia pestis in beef bologna by gamma irradiation. Sommers CH; Niemira BA J Food Prot; 2011 Apr; 74(4):627-30. PubMed ID: 21477478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]