BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 19351986)

  • 1. Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results.
    Marquet F; Pernot M; Aubry JF; Montaldo G; Marsac L; Tanter M; Fink M
    Phys Med Biol; 2009 May; 54(9):2597-613. PubMed ID: 19351986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrashort echo-time MRI versus CT for skull aberration correction in MR-guided transcranial focused ultrasound: In vitro comparison on human calvaria.
    Miller GW; Eames M; Snell J; Aubry JF
    Med Phys; 2015 May; 42(5):2223-33. PubMed ID: 25979016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy.
    Hertzberg Y; Volovick A; Zur Y; Medan Y; Vitek S; Navon G
    Med Phys; 2010 Jun; 37(6):2934-42. PubMed ID: 20632605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans.
    Aubry JF; Tanter M; Pernot M; Thomas JL; Fink M
    J Acoust Soc Am; 2003 Jan; 113(1):84-93. PubMed ID: 12558249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the pressure field distribution in transcranial ultrasonic neurostimulation.
    Younan Y; Deffieux T; Larrat B; Fink M; Tanter M; Aubry JF
    Med Phys; 2013 Aug; 40(8):082902. PubMed ID: 23927357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of nonlinear ultrasound propagation on high intensity brain therapy.
    Pinton G; Aubry JF; Fink M; Tanter M
    Med Phys; 2011 Mar; 38(3):1207-16. PubMed ID: 21520833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T1-weighted MRI as a substitute to CT for refocusing planning in MR-guided focused ultrasound.
    Wintermark M; Tustison NJ; Elias WJ; Patrie JT; Xin W; Demartini N; Eames M; Sumer S; Lau B; Cupino A; Snell J; Hananel A; Kassell N; Aubry JF
    Phys Med Biol; 2014 Jul; 59(13):3599-614. PubMed ID: 24909357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections.
    Jones RM; O'Reilly MA; Hynynen K
    Med Phys; 2015 Jul; 42(7):4385-400. PubMed ID: 26133635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A numerical study of transcranial focused ultrasound beam propagation at low frequency.
    Yin X; Hynynen K
    Phys Med Biol; 2005 Apr; 50(8):1821-36. PubMed ID: 15815098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of analytical and numerical approaches for CT-based aberration correction in transcranial passive acoustic imaging.
    Jones RM; Hynynen K
    Phys Med Biol; 2016 Jan; 61(1):23-36. PubMed ID: 26605827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-invasive transcranial ultrasound therapy guided by CT-scans.
    Marquet F; Pernot M; Aubry JF; Montaldo G; Tanter M; Fink M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():683-7. PubMed ID: 17946415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct phase projection and transcranial focusing of ultrasound for brain therapy.
    Pinton GF; Aubry JF; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1149-59. PubMed ID: 22711410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient method for transcranial ultrasound focus correction based on the coupling of boundary integrals and finite elements.
    Shen F; Fan F; Li F; Wang L; Wang R; Wang Y; Liu T; Wei C; Niu H
    Ultrasonics; 2024 Feb; 137():107181. PubMed ID: 37847943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MR-guided adaptive focusing of therapeutic ultrasound beams in the human head.
    Marsac L; Chauvet D; Larrat B; Pernot M; Robert B; Fink M; Boch AL; Aubry JF; Tanter M
    Med Phys; 2012 Feb; 39(2):1141-9. PubMed ID: 22320825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ex vivo optimisation of a heterogeneous speed of sound model of the human skull for non-invasive transcranial focused ultrasound at 1 MHz.
    Marsac L; Chauvet D; La Greca R; Boch AL; Chaumoitre K; Tanter M; Aubry JF
    Int J Hyperthermia; 2017 Sep; 33(6):635-645. PubMed ID: 28540778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of transcranial focusing thermal deposition in nonlinear HIFU brain surgery by numerical simulation.
    Ding X; Wang Y; Zhang Q; Zhou W; Wang P; Luo M; Jian X
    Phys Med Biol; 2015 May; 60(10):3975-98. PubMed ID: 25919037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers.
    Maimbourg G; Houdouin A; Deffieux T; Tanter M; Aubry JF
    Phys Med Biol; 2018 Jan; 63(2):025026. PubMed ID: 29219124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-receiver guided transcranial beam steering.
    Clement GT; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Apr; 49(4):447-53. PubMed ID: 11989700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demonstration of potential noninvasive ultrasound brain therapy through an intact skull.
    Hynynen K; Jolesz FA
    Ultrasound Med Biol; 1998 Feb; 24(2):275-83. PubMed ID: 9550186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation.
    Robertson JL; Cox BT; Jaros J; Treeby BE
    J Acoust Soc Am; 2017 Mar; 141(3):1726. PubMed ID: 28372121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.