These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 19351986)

  • 41. Design of patient-specific focused ultrasound arrays for non-invasive brain therapy with increased trans-skull transmission and steering range.
    Hughes A; Hynynen K
    Phys Med Biol; 2017 Aug; 62(17):L9-L19. PubMed ID: 28665289
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The application of sparse arrays in high frequency transcranial focused ultrasound therapy: a simulation study.
    Pajek D; Hynynen K
    Med Phys; 2013 Dec; 40(12):122901. PubMed ID: 24320540
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison between MR and CT imaging used to correct for skull-induced phase aberrations during transcranial focused ultrasound.
    Leung SA; Moore D; Gilbo Y; Snell J; Webb TD; Meyer CH; Miller GW; Ghanouni P; Butts Pauly K
    Sci Rep; 2022 Aug; 12(1):13407. PubMed ID: 35927449
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Full-wave acoustic and thermal modeling of transcranial ultrasound propagation and investigation of skull-induced aberration correction techniques: a feasibility study.
    Kyriakou A; Neufeld E; Werner B; Székely G; Kuster N
    J Ther Ultrasound; 2015; 3():11. PubMed ID: 26236478
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A numerical study on the oblique focus in MR-guided transcranial focused ultrasound.
    Hughes A; Huang Y; Pulkkinen A; Schwartz ML; Lozano AM; Hynynen K
    Phys Med Biol; 2016 Nov; 61(22):8025-8043. PubMed ID: 27779134
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Numerical Evaluation of the Influence of Skull Heterogeneity on Transcranial Ultrasonic Focusing.
    Jiang C; Li D; Xu F; Li Y; Liu C; Ta D
    Front Neurosci; 2020; 14():317. PubMed ID: 32351351
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison Between Ray-Tracing and Full-Wave Simulation for Transcranial Ultrasound Focusing on a Clinical System Using the Transfer Matrix Formalism.
    Bancel T; Houdouin A; Annic P; Rachmilevitch I; Shapira Y; Tanter M; Aubry JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jul; 68(7):2554-2565. PubMed ID: 33651688
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Focusing and steering through absorbing and aberrating layers: application to ultrasonic propagation through the skull.
    Tanter M; Thomas JL; Fink M
    J Acoust Soc Am; 1998 May; 103(5 Pt 1):2403-10. PubMed ID: 9604342
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Patterns of thermal deposition in the skull during transcranial focused ultrasound surgery.
    Connor CW; Hynynen K
    IEEE Trans Biomed Eng; 2004 Oct; 51(10):1693-706. PubMed ID: 15490817
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A viscoelastic model for the prediction of transcranial ultrasound propagation: application for the estimation of shear acoustic properties in the human skull.
    Pichardo S; Moreno-Hernández C; Andrew Drainville R; Sin V; Curiel L; Hynynen K
    Phys Med Biol; 2017 Aug; 62(17):6938-6962. PubMed ID: 28783716
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A non-invasive method for focusing ultrasound through the human skull.
    Clement GT; Hynynen K
    Phys Med Biol; 2002 Apr; 47(8):1219-36. PubMed ID: 12030552
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Noninvasive Ultrasound Resonance Method for Detecting Skull Induced Phase Shifts May Provide a Signal for Adaptive Focusing.
    Deng L; Hughes A; Hynynen K
    IEEE Trans Biomed Eng; 2020 Sep; 67(9):2628-2637. PubMed ID: 31976875
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound.
    Mueller JK; Ai L; Bansal P; Legon W
    J Neural Eng; 2017 Dec; 14(6):066012. PubMed ID: 28777075
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transcranial Ultrasonic Focusing by a Phased Array Based on Micro-CT Images.
    Yin Y; Yan S; Huang J; Zhang B
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139547
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of internal reflection in transskull phase distortion.
    Clement GT; Sun J; Hynynen K
    Ultrasonics; 2001 Mar; 39(2):109-13. PubMed ID: 11270628
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An Acoustic Measurement Library for Non-Invasive Trans-Rodent Skull Ultrasonic Focusing at High Frequency.
    Rahimi S; Jones RM; Hynynen K
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2184-2191. PubMed ID: 34951839
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An Ultrasound-Guided Hemispherical Phased Array for Microbubble-Mediated Ultrasound Therapy.
    Deng L; Yang SD; O'Reilly MA; Jones RM; Hynynen K
    IEEE Trans Biomed Eng; 2022 May; 69(5):1776-1787. PubMed ID: 34855582
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Numerical Study of Acoustic Holograms for Deep-Brain Targeting through the Temporal Bone Window.
    Andrés D; Jiménez N; Benlloch JM; Camarena F
    Ultrasound Med Biol; 2022 May; 48(5):872-886. PubMed ID: 35221196
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design and experimental evaluations of a low-frequency hemispherical ultrasound phased-array system for transcranial blood-brain barrier disruption.
    Liu HL; Chen HW; Kuo ZH; Huang WC
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2407-16. PubMed ID: 18838366
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A rapid element pressure field simulation method for transcranial phase correction in focused ultrasound therapy.
    Xu P; Wu N; Shen G
    Phys Med Biol; 2023 Dec; 68(23):. PubMed ID: 37934058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.