BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 19352020)

  • 1. Improvement of alkaliphily of Bacillus alkaline xylanase by introducing amino acid substitutions both on catalytic cleft and protein surface.
    Umemoto H; Ihsanawati ; Inami M; Yatsunami R; Fukui T; Kumasaka T; Tanaka N; Nakamura S
    Biosci Biotechnol Biochem; 2009 Apr; 73(4):965-7. PubMed ID: 19352020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of salt bridges to alkaliphily of Bacillus alkaline xylanase.
    Umemoto H; Ihsanawati ; Inami M; Yatsunami R; Fukui T; Kumasaka T; Tanaka N; Nakamura S
    Nucleic Acids Symp Ser (Oxf); 2007; (51):461-2. PubMed ID: 18029786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of binding activity of xylan-binding domain by amino acid substitution.
    Sakata T; Takakura J; Miyakubo H; Osada Y; Wada R; Takahashi H; Yatsunami R; Fukui T; Nakamura S
    Nucleic Acids Symp Ser (Oxf); 2006; (50):253-4. PubMed ID: 17150913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A calcium-dependent xylan-binding domain of alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1.
    Yazawa R; Takakura J; Sakata T; Ihsanawati ; Yatsunami R; Fukui T; Kumasaka T; Tanaka N; Nakamura S
    Biosci Biotechnol Biochem; 2011; 75(2):379-81. PubMed ID: 21307573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis.
    Bai W; Cao Y; Liu J; Wang Q; Jia Z
    BMC Biotechnol; 2016 Nov; 16(1):77. PubMed ID: 27825339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation.
    Mamo G; Thunnissen M; Hatti-Kaul R; Mattiasson B
    Biochimie; 2009 Sep; 91(9):1187-96. PubMed ID: 19567261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increase in the thermostability of GH11 xylanase XynJ from Bacillus sp. strain 41M-1 using site saturation mutagenesis.
    Takita T; Nakatani K; Katano Y; Suzuki M; Kojima K; Saka N; Mikami B; Yatsunami R; Nakamura S; Yasukawa K
    Enzyme Microb Technol; 2019 Nov; 130():109363. PubMed ID: 31421720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed evolution of xylanase J from alkaliphilic Bacillus sp. strain 41M-1: restore of alkaliphily of a mutant with an acidic pH optimum.
    Inami M; Morokuma C; Sugio A; Tamanoi H; Yatsunami R; Nakamura S
    Nucleic Acids Res Suppl; 2003; (3):315-6. PubMed ID: 14510507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the alkalophilic performances of the Xyl1 xylanase from Streptomyces sp. S38: structural comparison and mutational analysis.
    De Lemos Esteves F; Gouders T; Lamotte-Brasseur J; Rigali S; Frère JM
    Protein Sci; 2005 Feb; 14(2):292-302. PubMed ID: 15659364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Insight into and Mutational Analysis of Family 11 Xylanases: Implications for Mechanisms of Higher pH Catalytic Adaptation.
    Bai W; Zhou C; Zhao Y; Wang Q; Ma Y
    PLoS One; 2015; 10(7):e0132834. PubMed ID: 26161643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of recombinant endo-1,4-β-xylanase of Bacillus halodurans C-125 and rational identification of hot spot amino acid residues responsible for enhancing thermostability by an in-silico approach.
    Mahmood MS; Rasul F; Saleem M; Afroz A; Malik MF; Ashraf NM; Rashid U; Naz S; Zeeshan N
    Mol Biol Rep; 2019 Aug; 46(4):3651-3662. PubMed ID: 31079316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the removal of N-terminal non-structured amino acids on activity and stability of xylanases from Orpinomyces sp. PC-2.
    Ventorim RZ; de Oliveira Mendes TA; Trevizano LM; Dos Santos Camargos AM; Guimarães VM
    Int J Biol Macromol; 2018 Jan; 106():312-319. PubMed ID: 28782612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the mechanism of thermostabilization of GH10 xylanase from Bacillus sp. strain TAR-1 by the mutation of S92 to E.
    Suzuki M; Takita T; Kuwata K; Nakatani K; Li T; Katano Y; Kojima K; Mizutani K; Mikami B; Yatsunami R; Nakamura S; Yasukawa K
    Biosci Biotechnol Biochem; 2021 Feb; 85(2):386-390. PubMed ID: 33604642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusion of carbohydrate binding modules from Thermotoga neapolitana with a family 10 xylanase from Bacillus halodurans S7.
    Mamo G; Hatti-Kaul R; Mattiasson B
    Extremophiles; 2007 Jan; 11(1):169-77. PubMed ID: 17006740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic characterization of a novel thermostable and alkaline tolerant GH10 xylanase and activity improvement by multiple rational mutagenesis strategies.
    Lai Z; Zhou C; Ma X; Xue Y; Ma Y
    Int J Biol Macromol; 2021 Feb; 170():164-177. PubMed ID: 33352153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1.
    Nakamura S; Wakabayashi K; Nakai R; Aono R; Horikoshi K
    Appl Environ Microbiol; 1993 Jul; 59(7):2311-6. PubMed ID: 8292206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and sequence analysis of three variants of the gene encoding alkaline xylanase C from the alkaliphilic Bacillus sp. (NCL 87-6-10).
    Sharma P; Rele MV; Kumar LS
    Biochem Genet; 2013 Oct; 51(9-10):737-49. PubMed ID: 23749064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular anatomy of the alkaliphilic xylanase from Bacillus halodurans C-125.
    Nishimoto M; Fushinobu S; Miyanaga A; Kitaoka M; Hayashi K
    J Biochem; 2007 May; 141(5):709-17. PubMed ID: 17383976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Isolation and characterization of an alkaline xylanasefrom a newly isolated Bacillus sp. QH14].
    Shan ZQ; Zhou JG; Zhou YF; Yuan HY; Lv H
    Yi Chuan; 2012 Mar; 34(3):356-65. PubMed ID: 22425955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering increased thermostability in the thermostable GH-11 xylanase from Thermobacillus xylanilyticus.
    Paës G; O'Donohue MJ
    J Biotechnol; 2006 Sep; 125(3):338-50. PubMed ID: 16644050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.