BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 19352042)

  • 1. Efficient gene disruption in the high-ploidy yeast Candida utilis using the Cre-loxP system.
    Ikushima S; Fujii T; Kobayashi O
    Biosci Biotechnol Biochem; 2009 Apr; 73(4):879-84. PubMed ID: 19352042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the Cre-loxP system for multiple gene disruption in the yeast Kluyveromyces marxianus.
    Ribeiro O; Gombert AK; Teixeira JA; Domingues L
    J Biotechnol; 2007 Aug; 131(1):20-6. PubMed ID: 17624462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and sequence analysis of the orotidine-5'-phosphate decarboxylase gene (URA3) of Candida utilis. Comparison with the OMP decarboxylase gene family.
    Rodríguez L; Chávez FP; González ME; Basabe L; Rivero T
    Yeast; 1998 Nov; 14(15):1399-406. PubMed ID: 9848231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling gene expression in yeast by inducible site-specific recombination.
    Cheng TH; Chang CR; Joy P; Yablok S; Gartenberg MR
    Nucleic Acids Res; 2000 Dec; 28(24):E108. PubMed ID: 11121495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel and convenient methods for Candida tropicalis gene disruption using a mutated hygromycin B resistance gene.
    Hara A; Arie M; Kanai T; Matsui T; Matsuda H; Furuhashi K; Ueda M; Tanaka A
    Arch Microbiol; 2001 Nov; 176(5):364-9. PubMed ID: 11702078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous and Sequential Integration by Cre/
    Choi HJ; Kim YH
    J Microbiol Biotechnol; 2018 May; 28(5):826-830. PubMed ID: 29539879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Clox Systems for rapid and efficient gene disruption in Candida albicans.
    Shahana S; Childers DS; Ballou ER; Bohovych I; Odds FC; Gow NA; Brown AJ
    PLoS One; 2014; 9(6):e100390. PubMed ID: 24940603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-excising Cre/mutant lox marker recycling system for multiple gene integrations and consecutive gene deletions in Aspergillus oryzae.
    Zhang S; Ban A; Ebara N; Mizutani O; Tanaka M; Shintani T; Gomi K
    J Biosci Bioeng; 2017 Apr; 123(4):403-411. PubMed ID: 28011085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous ectopic recombination in cell-type-specific Cre mice removes loxP-flanked marker cassettes in vivo.
    Eckardt D; Theis M; Döring B; Speidel D; Willecke K; Ott T
    Genesis; 2004 Apr; 38(4):159-65. PubMed ID: 15083516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast.
    Gueldener U; Heinisch J; Koehler GJ; Voss D; Hegemann JH
    Nucleic Acids Res; 2002 Mar; 30(6):e23. PubMed ID: 11884642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and structural analysis of efficient autonomously replicating sequences (ARSs) of the yeast Candida utilis.
    Iwakiri R; Eguchi S; Noda Y; Adachi H; Yoda K
    Yeast; 2005 Oct; 22(13):1049-60. PubMed ID: 16200505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Puromycin- and methotrexate-resistance cassettes and optimized Cre-recombinase expression plasmids for use in yeast.
    MacDonald C; Piper RC
    Yeast; 2015 May; 32(5):423-38. PubMed ID: 25688547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of the YAP1 homologue of Candida utilis and its use as an efficient selection marker.
    Iwakiri R; Noda Y; Adachi H; Yoda K
    Yeast; 2005 Oct; 22(13):1079-87. PubMed ID: 16200522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutant loxP vectors for selectable marker recycle and conditional knock-outs.
    Arakawa H; Lodygin D; Buerstedde JM
    BMC Biotechnol; 2001; 1():7. PubMed ID: 11591226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring redundancy in the yeast genome: an improved strategy for use of the cre-loxP system.
    Delneri D; Tomlin GC; Wixon JL; Hutter A; Sefton M; Louis EJ; Oliver SG
    Gene; 2000 Jul; 252(1-2):127-35. PubMed ID: 10903444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new type of gene-disruption cassette with a rescue gene for Pichia pastoris.
    Shibui T; Hara H
    Biotechnol Prog; 2017 Sep; 33(5):1201-1208. PubMed ID: 28840657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning, characterization and functionality of the orotidine-5'-phosphate decarboxylase gene (URA3) of the glycolipid-producing yeast Candida bombicola.
    Van Bogaert IN; De Maeseneire SL; De Schamphelaire W; Develter D; Soetaert W; Vandamme EJ
    Yeast; 2007 Mar; 24(3):201-8. PubMed ID: 17351910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of promoters suitable for a multidrug-resistant marker CuYAP1 in the yeast Candida utilis.
    Iwakiri R; Noda Y; Adachi H; Yoda K
    Yeast; 2006 Jan; 23(1):23-34. PubMed ID: 16411162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a transformation and selection system for the glycolipid-producing yeast Candida bombicola.
    Van Bogaert IN; De Maeseneire SL; Develter D; Soetaert W; Vandamme EJ
    Yeast; 2008 Apr; 25(4):273-8. PubMed ID: 18327888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of the Cyberlindnera jadinii genome and its relation to Candida utilis analyzed by the occurrence of single nucleotide polymorphisms.
    Rupp O; Brinkrolf K; Buerth C; Kunigo M; Schneider J; Jaenicke S; Goesmann A; Pühler A; Jaeger KE; Ernst JF
    J Biotechnol; 2015 Oct; 211():20-30. PubMed ID: 26150016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.