These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 19352732)
1. Generic theory of colloidal transport. Jülicher F; Prost J Eur Phys J E Soft Matter; 2009 May; 29(1):27-36. PubMed ID: 19352732 [TBL] [Abstract][Full Text] [Related]
2. Thermophoresis in colloidal suspensions driven by Marangoni forces. Würger A Phys Rev Lett; 2007 Mar; 98(13):138301. PubMed ID: 17501246 [TBL] [Abstract][Full Text] [Related]
3. Cyclic force driven colloidal self-assembly near a solid surface. Rahman MM; Williams SJ J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1402-1410. PubMed ID: 34587527 [TBL] [Abstract][Full Text] [Related]
4. Effect of angular momentum conservation on hydrodynamic simulations of colloids. Yang M; Theers M; Hu J; Gompper G; Winkler RG; Ripoll M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013301. PubMed ID: 26274301 [TBL] [Abstract][Full Text] [Related]
9. Diffusiophoretic self-propulsion for partially catalytic spherical colloids. de Graaf J; Rempfer G; Holm C IEEE Trans Nanobioscience; 2015 Apr; 14(3):272-88. PubMed ID: 25751872 [TBL] [Abstract][Full Text] [Related]
10. Coupling of hydrodynamic and electric interactions in adsorption of colloidal particles. Warszyński P Adv Colloid Interface Sci; 2000 Jan; 84(1-3):47-142. PubMed ID: 10696452 [TBL] [Abstract][Full Text] [Related]
11. Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model. Dzwinel W; Yuen DA; Boryczko K J Mol Model; 2002 Jan; 8(1):33-43. PubMed ID: 12111400 [TBL] [Abstract][Full Text] [Related]
12. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Jiang HR; Yoshinaga N; Sano M Phys Rev Lett; 2010 Dec; 105(26):268302. PubMed ID: 21231718 [TBL] [Abstract][Full Text] [Related]
13. Molecular dynamics simulation of the motion of colloidal nanoparticles in a solute concentration gradient and a comparison to the continuum limit. Sharifi-Mood N; Koplik J; Maldarelli C Phys Rev Lett; 2013 Nov; 111(18):184501. PubMed ID: 24237522 [TBL] [Abstract][Full Text] [Related]
14. Colloidal attraction induced by a temperature gradient. Di Leonardo R; Ianni F; Ruocco G Langmuir; 2009 Apr; 25(8):4247-50. PubMed ID: 19265405 [TBL] [Abstract][Full Text] [Related]
15. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers. Snezhko A J Phys Condens Matter; 2011 Apr; 23(15):153101. PubMed ID: 21436505 [TBL] [Abstract][Full Text] [Related]
16. Effective Interactions between Chemically Active Colloids and Interfaces. Popescu MN; Uspal WE; Domínguez A; Dietrich S Acc Chem Res; 2018 Dec; 51(12):2991-2997. PubMed ID: 30403132 [TBL] [Abstract][Full Text] [Related]
17. Dilatant flow of concentrated suspensions of rough particles. Lootens D; van Damme H; Hémar Y; Hébraud P Phys Rev Lett; 2005 Dec; 95(26):268302. PubMed ID: 16486413 [TBL] [Abstract][Full Text] [Related]
18. Self-propelled Brownian spinning top: dynamics of a biaxial swimmer at low Reynolds numbers. Wittkowski R; Löwen H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021406. PubMed ID: 22463211 [TBL] [Abstract][Full Text] [Related]
19. Active Colloids as Models, Materials, and Machines. Bishop KJM; Biswal SL; Bharti B Annu Rev Chem Biomol Eng; 2023 Jun; 14():1-30. PubMed ID: 36930877 [TBL] [Abstract][Full Text] [Related]
20. Interaction forces between colloidal particles in liquid: theory and experiment. Liang Y; Hilal N; Langston P; Starov V Adv Colloid Interface Sci; 2007 Oct; 134-135():151-66. PubMed ID: 17499205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]