These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 19353571)

  • 1. Surface hydration of polymeric (bio)materials: a molecular dynamics simulation study.
    Raffaini G; Ganazzoli F
    J Biomed Mater Res A; 2010 Mar; 92(4):1382-91. PubMed ID: 19353571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How surface wettability affects the binding, folding, and dynamics of hydrophobic polymers at interfaces.
    Jamadagni SN; Godawat R; Garde S
    Langmuir; 2009 Nov; 25(22):13092-9. PubMed ID: 19492828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics.
    Srinivas G; Discher DE; Klein ML
    Nat Mater; 2004 Sep; 3(9):638-44. PubMed ID: 15300242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulation of bulk mechanical properties and surface hydration of biomaterials.
    Raffaini G; Elli S; Ganazzoli F
    J Biomed Mater Res A; 2006 Jun; 77(3):618-26. PubMed ID: 16506174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of protein surface hydration shell free energy of water motion: theoretical study and molecular dynamics simulation.
    Sheu SY; Yang DY
    J Phys Chem B; 2010 Dec; 114(49):16558-66. PubMed ID: 21090707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study.
    Li X; Loh XJ; Wang K; He C; Li J
    Biomacromolecules; 2005; 6(5):2740-7. PubMed ID: 16153114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneously forming hydrogel from water-soluble random- and block-type phospholipid polymers.
    Kimura M; Fukumoto K; Watanabe J; Takai M; Ishihara K
    Biomaterials; 2005 Dec; 26(34):6853-62. PubMed ID: 15978662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water molecules in DNA recognition II: a molecular dynamics view of the structure and hydration of the trp operator.
    Bonvin AM; Sunnerhagen M; Otting G; van Gunsteren WF
    J Mol Biol; 1998 Oct; 282(4):859-73. PubMed ID: 9743632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials.
    Sagnella S; Mai-Ngam K
    Colloids Surf B Biointerfaces; 2005 May; 42(2):147-55. PubMed ID: 15833667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of novel biointerfaces (I). Blood compatibility of poly(2-methoxyethyl acrylate).
    Tanaka M
    Biomed Mater Eng; 2004; 14(4):427-38. PubMed ID: 15472391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attractions, water structure, and thermodynamics of hydrophobic polymer collapse.
    Goel G; Athawale MV; Garde S; Truskett TM
    J Phys Chem B; 2008 Oct; 112(42):13193-6. PubMed ID: 18821793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encoding crystal microstructure and chain folding in the chemical structure of synthetic polymers.
    Le Fevere de Ten Hove C; Penelle J; Ivanov DA; Jonas AM
    Nat Mater; 2004 Jan; 3(1):33-7. PubMed ID: 14647486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-covalent nano-adducts of co-poly(ester amide) and poly(ethylene glycol): preparation, characterization and model drug-release studies.
    Legashvili I; Nepharidze N; Katsarava R; Sannigrahi B; Khan IM
    J Biomater Sci Polym Ed; 2007; 18(6):673-85. PubMed ID: 17623550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly liquid-repellent, large-area, nanostructured poly(vinylidene fluoride)/poly(ethyl 2-cyanoacrylate) composite coatings: particle filler effects.
    Tiwari MK; Bayer IS; Jursich GM; Schutzius TM; Megaridis CM
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):1114-9. PubMed ID: 20423130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of bulk and surface properties of some biocompatible hydrophobic polymers on the stability of methylene chloride-in-water mini-emulsions used to prepare nanoparticles by emulsification-solvent evaporation.
    Babak VG; Baros F; Boulanouar O; Boury F; Fromm M; Kildeeva NR; Ubrich N; Maincent P
    Colloids Surf B Biointerfaces; 2007 Oct; 59(2):194-207. PubMed ID: 17600692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water structure and blood compatibility of poly(tetrahydrofurfuryl acrylate).
    Mochizuki A; Hatakeyama T; Tomono Y; Tanaka M
    J Biomater Sci Polym Ed; 2009; 20(5-6):591-603. PubMed ID: 19323878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comblike poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers as anti-infection surface modifying agents.
    Mai-ngam K
    Colloids Surf B Biointerfaces; 2006 May; 49(2):117-25. PubMed ID: 16621475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulations of ionenes, hydrophobic ions with unusual solution thermodynamic properties. The ion-specific effects.
    Druchok M; Vlachy V; Dill KA
    J Phys Chem B; 2009 Oct; 113(43):14270-6. PubMed ID: 19799433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions.
    van Oss CJ
    J Mol Recognit; 2003; 16(4):177-90. PubMed ID: 12898668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein adsorption on the hydrophilic surface of a glassy polymer: a computer simulation study.
    Raffaini G; Ganazzoli F
    Phys Chem Chem Phys; 2006 Jun; 8(23):2765-72. PubMed ID: 16763710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.