These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 19353736)

  • 1. Virus filtration of high-concentration monoclonal antibody solutions.
    Marques BF; Roush DJ; Göklen KE
    Biotechnol Prog; 2009; 25(2):483-91. PubMed ID: 19353736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limits in virus filtration capability? Impact of virus quality and spike level on virus removal with xenotropic murine leukemia virus.
    Roush DJ; Myrold A; Burnham MS; And JV; Hughes JV
    Biotechnol Prog; 2015; 31(1):135-44. PubMed ID: 25395156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of a 20-nm pore-size filter in the plasma-derived factor VIII manufacturing process.
    Furuya K; Murai K; Yokoyama T; Maeno H; Takeda Y; Murozuka T; Wakisaka A; Tanifuji M; Tomono T
    Vox Sang; 2006 Aug; 91(2):119-25. PubMed ID: 16907872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of viral filtration performance of monoclonal antibodies based on biophysical properties of feed.
    Rayfield WJ; Roush DJ; Chmielowski RA; Tugcu N; Barakat S; Cheung JK
    Biotechnol Prog; 2015; 31(3):765-74. PubMed ID: 25919945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of monoclonal antibody immobilization on hydrazide-preactivated hollow fiber membrane.
    Holton OD; Vicalvi JJ
    Biotechniques; 1991 Nov; 11(5):662-7. PubMed ID: 1804258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of antibody solution conditions on filter performance for virus removal filter Planova 20N.
    Hongo-Hirasaki T; Komuro M; Ide S
    Biotechnol Prog; 2010; 26(4):1080-7. PubMed ID: 20730765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of virus through novel membrane filtration method.
    Manabe S
    Dev Biol Stand; 1996; 88():81-90. PubMed ID: 9119166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clearance of murine leukaemia virus from monoclonal antibody solution by a hydrophilic PVDF microporous membrane filter.
    Aranha-Creado H; Peterson J; Huang PY
    Biologicals; 1998 Jun; 26(2):167-72. PubMed ID: 9811524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing the capacity of parvovirus-retentive membranes: performance of the Viresolve Prefilter.
    Bolton GR; Spector S; Lacasse D
    Biotechnol Appl Biochem; 2006 Jan; 43(Pt 1):55-63. PubMed ID: 16207176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a filter train for precipitate removal in monoclonal antibody downstream processing.
    Kandula S; Babu S; Jin M; Shukla AA
    Biotechnol Appl Biochem; 2009 Oct; 54(3):149-55. PubMed ID: 19656082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing parvovirus filter throughput of monoclonal antibodies using ion exchange membrane adsorptive pre-filtration.
    Brown A; Bechtel C; Bill J; Liu H; Liu J; McDonald D; Pai S; Radhamohan A; Renslow R; Thayer B; Yohe S; Dowd C
    Biotechnol Bioeng; 2010 Jul; 106(4):627-37. PubMed ID: 20229510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of viral clearance unit operations for monoclonal antibodies.
    Miesegaes G; Lute S; Brorson K
    Biotechnol Bioeng; 2010 Jun; 106(2):238-46. PubMed ID: 20073086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virus removal from factor IX by filtration: validation of the integrity test and effect of manufacturing process conditions.
    Roberts PL; Feldman P; Crombie D; Walker C; Lowery K
    Biologicals; 2010 Mar; 38(2):303-10. PubMed ID: 20089418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of a new protein A affinity membrane for the primary recovery of antibodies.
    Boi C; Dimartino S; Sarti GC
    Biotechnol Prog; 2008; 24(3):640-7. PubMed ID: 18473438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved removal of viruslike particles from purified monoclonal antibody IgM preparation via virus filtration.
    Maerz H; Hahn SO; Maassen A; Meisel H; Roggenbuck D; Sato T; Tanzmann H; Emmrich F; Marx U
    Nat Biotechnol; 1996 May; 14(5):651-2. PubMed ID: 9630961
    [No Abstract]   [Full Text] [Related]  

  • 16. Removal of small nonenveloped viruses by antibody-enhanced nanofiltration during the manufacture of plasma derivatives.
    Kreil TR; Wieser A; Berting A; Spruth M; Medek C; Pölsler G; Gaida T; Hämmerle T; Teschner W; Schwarz HP; Barrett PN
    Transfusion; 2006 Jul; 46(7):1143-51. PubMed ID: 16836561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Achieving a Successful Scale-Down Model and Optimized Economics through Parvovirus Filter Validation using Purified TrueSpikeTM Viruses.
    De Vilmorin P; Slocum A; Jaber T; Schaefer O; Ruppach H; Genest P
    PDA J Pharm Sci Technol; 2015; 69(3):440-9. PubMed ID: 26048749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploitation of the adsorptive properties of depth filters for host cell protein removal during monoclonal antibody purification.
    Yigzaw Y; Piper R; Tran M; Shukla AA
    Biotechnol Prog; 2006; 22(1):288-96. PubMed ID: 16454522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of standard and new generation hydrophobic interaction chromatography resins in the monoclonal antibody purification process.
    Chen J; Tetrault J; Ley A
    J Chromatogr A; 2008 Jan; 1177(2):272-81. PubMed ID: 17709111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size exclusion removal of model mammalian viruses using a unique membrane system, Part II: Module qualification and process simulation.
    DiLeo AJ; Vacante DA; Deane EF
    Biologicals; 1993 Sep; 21(3):287-96. PubMed ID: 8117442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.