These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 19353736)

  • 21. A three plus three parameters mechanistic model for viral filtration.
    Misra P; Sinha A; Rathore AS; Shukla A; Mir FQ
    Biotechnol Prog; 2017 Nov; 33(6):1538-1547. PubMed ID: 28699320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clearance of the rodent retrovirus, XMuLV, by protein A chromatography.
    Bach J; Connell-Crowley L
    Biotechnol Bioeng; 2015 Apr; 112(4):743-50. PubMed ID: 25335906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The use of a microporous polyvinylidene fluoride (PVDF) membrane filter to separate contaminating viral particles from biologically important proteins.
    Oshima KH; Evans-Strickfaden TT; Highsmith AK; Ades EW
    Biologicals; 1996 Jun; 24(2):137-45. PubMed ID: 8889061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fouling of virus filtration membranes by monoclonal antibody feeds with low aggregate content.
    Kaufman Y; Hunt KC; Hale G; McClure M; Latulippe D; Sivan M; Wilson J; Dorin R; Agroskin Y; Siwak M; Gerion D
    Biotechnol Bioeng; 2024 Aug; 121(8):2400-2408. PubMed ID: 37163237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of membrane structure on the filtrate flux during monoclonal antibody filtration through virus retentive membranes.
    Billups M; Minervini M; Holstein M; Feroz H; Ranjan S; Hung J; Bao H; Li ZJ; Ghose S; Zydney AL
    Biotechnol Prog; 2022 Mar; 38(2):e3231. PubMed ID: 34994527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Normal-flow virus filtration: detection and assessment of the endpoint in bio-processing.
    Bolton G; Cabatingan M; Rubino M; Lute S; Brorson K; Bailey M
    Biotechnol Appl Biochem; 2005 Oct; 42(Pt 2):133-42. PubMed ID: 15901236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of varying virus-spiking conditions on a virus-removal filter Planova™ 20N in a virus validation study of antibody solutions.
    Hongo-Hirasaki T; Yamaguchi K; Yanagida K; Hayashida H; Ide S
    Biotechnol Prog; 2011; 27(1):162-9. PubMed ID: 21312364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of anti-viral filters.
    Hughes B; Bradburne A; Sheppard A; Young D
    Dev Biol Stand; 1996; 88():91-8. PubMed ID: 9119168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A size-exclusion nanocellulose filter paper for virus removal.
    Metreveli G; Wågberg L; Emmoth E; Belák S; Strømme M; Mihranyan A
    Adv Healthc Mater; 2014 Oct; 3(10):1546-50, 1524. PubMed ID: 24687994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bracketed generic inactivation of rodent retroviruses by low pH treatment for monoclonal antibodies and recombinant proteins.
    Brorson K; Krejci S; Lee K; Hamilton E; Stein K; Xu Y
    Biotechnol Bioeng; 2003 May; 82(3):321-9. PubMed ID: 12599259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A predictive aggregate transport model for microfiltration of combined macromolecular solutions and poly-disperse suspensions: testing model with transgenic goat milk.
    Baruah GL; Couto D; Belfort G
    Biotechnol Prog; 2003; 19(5):1533-40. PubMed ID: 14524716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improvement of virus safety of an antihemophilc factor IX by virus filtration process.
    Kim IS; Choi YW; Kang Y; Sung HM; Sohn KW; Kim YS
    J Microbiol Biotechnol; 2008 Jul; 18(7):1317-25. PubMed ID: 18667862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Virus elimination during the purification of monoclonal antibodies by column chromatography and additional steps.
    Roberts PL
    Biotechnol Prog; 2014; 30(6):1341-7. PubMed ID: 25181429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Size exclusion removal of model mammalian viruses using a unique membrane system, Part I: Membrane qualification.
    DiLeo AJ; Vacante DA; Deane EF
    Biologicals; 1993 Sep; 21(3):275-86. PubMed ID: 8117441
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of protein fouling on nanoparticle capture within the Viresolve® Pro and Viresolve® NFP virus removal membranes.
    Fallahianbijan F; Giglia S; Carbrello C; Bell D; Zydney AL
    Biotechnol Bioeng; 2019 Sep; 116(9):2285-2291. PubMed ID: 31081123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of solution pH on protein transmission and membrane capacity during virus filtration.
    Bakhshayeshi M; Zydney AL
    Biotechnol Bioeng; 2008 May; 100(1):108-17. PubMed ID: 18080342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sterile Filtration of Highly Concentrated Protein Formulations: Impact of Protein Concentration, Formulation Composition, and Filter Material.
    Allmendinger A; Mueller R; Huwyler J; Mahler HC; Fischer S
    J Pharm Sci; 2015 Oct; 104(10):3319-29. PubMed ID: 26149748
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-throughput screening of chromatographic separations: III. Monoclonal antibodies on ceramic hydroxyapatite.
    Wensel DL; Kelley BD; Coffman JL
    Biotechnol Bioeng; 2008 Aug; 100(5):839-54. PubMed ID: 18551522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Membrane filtration for virus removal.
    Brandwein H; Aranha-Creado H
    Dev Biol (Basel); 2000; 102():157-63. PubMed ID: 10794103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monoclonal anti-A antibody removal by synthetic A antigen immobilized on specific antibody filters.
    Gautam S; Korchagina EY; Bovin NV; Federspiel WJ
    Biotechnol Bioeng; 2008 Mar; 99(4):876-83. PubMed ID: 17705231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.