BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19353871)

  • 1. [Preparation of coated iron nanoparticles for reduction of trichloroethylene].
    Liu BJ; Jin ZH; Li TL; An Y; Li SJ; Wang W
    Huan Jing Ke Xue; 2009 Jan; 30(1):140-5. PubMed ID: 19353871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties.
    Liu Y; Majetich SA; Tilton RD; Sholl DS; Lowry GV
    Environ Sci Technol; 2005 Mar; 39(5):1338-45. PubMed ID: 15787375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead.
    Kim H; Hong HJ; Jung J; Kim SH; Yang JW
    J Hazard Mater; 2010 Apr; 176(1-3):1038-43. PubMed ID: 20042289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles.
    Wu L; Ritchie SM
    Chemosphere; 2006 Apr; 63(2):285-92. PubMed ID: 16226292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system.
    Jung Lin C; Lo SL
    Water Res; 2005 Mar; 39(6):1037-46. PubMed ID: 15766958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Oxidation of trichloroethylene in water with permanganate].
    Tian L; Yang Q; Shang HT; Hao CB
    Huan Jing Ke Xue; 2009 Sep; 30(9):2570-4. PubMed ID: 19927806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe
    Phenrat T; Schoenfelder D; Kirschling TL; Tilton RD; Lowry GV
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7157-7169. PubMed ID: 26233743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron.
    Rajajayavel SR; Ghoshal S
    Water Res; 2015 Jul; 78():144-53. PubMed ID: 25935369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination.
    Liu Y; Lowry GV
    Environ Sci Technol; 2006 Oct; 40(19):6085-90. PubMed ID: 17051804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of potential positive effects of nZVI surface modification and concentration levels on TCE dechlorination in the presence of competing strong oxidants, using an experimental design.
    Kaifas D; Malleret L; Kumar N; Fétimi W; Claeys-Bruno M; Sergent M; Doumenq P
    Sci Total Environ; 2014 May; 481():335-42. PubMed ID: 24607397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of particle composition and environmental parameters on catalytic hydrodechlorination of trichloroethylene by nanoscale bimetallic Ni-Fe.
    Wei J; Qian Y; Liu W; Wang L; Ge Y; Zhang J; Yu J; Ma X
    J Environ Sci (China); 2014 May; 26(5):1162-70. PubMed ID: 25079647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic effect of nickel ions on the coupled dechlorination of trichloroethylene and 2,4-dichlorophenol by Fe/TiO₂ nanocomposites in the presence of UV light under anoxic conditions.
    Parshetti GK; Doong RA
    Water Res; 2011 Aug; 45(14):4198-210. PubMed ID: 21683974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the electrode arrangements on reductive dechlorination of trichloroethylene in an electro-enhanced iron wall.
    Liu CC; Liau SF; Tseng DH
    Environ Technol; 2006 Jun; 27(6):683-93. PubMed ID: 16865924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of the dechlorination mechanisms and Ni release styles of chloroalkane and chloroalkene removal using nickel/iron nanoparticles.
    Zhang W; Jia N; Han X; Qiu Z; Lv S; Lin K; Ying W
    Environ Technol; 2016 Aug; 37(16):2088-98. PubMed ID: 26776083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles.
    Xin J; Han J; Zheng X; Shao H; Kolditz O
    J Environ Manage; 2015 Mar; 150():420-426. PubMed ID: 25556871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of trichloroethylene using iron, bimetals and trimetals.
    Chao KP; Ong SK; Fryzek T; Yuan W; Braida W
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(11):1536-42. PubMed ID: 22702813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of benzene, toluene on reductive dechlorination of trichloroethylene and its daughter product cis-1,2-dichloroethylene by granular iron].
    Liu YL; Xia F; Liu F; Chen HH
    Huan Jing Ke Xue; 2010 Jul; 31(7):1526-32. PubMed ID: 20825021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Dechlorination degradation of 2,4-D by nanoscale Fe3O4].
    Fang GD; Si YB
    Huan Jing Ke Xue; 2010 Jun; 31(6):1499-505. PubMed ID: 20698263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.