These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 19353884)

  • 1. [Influences of humic acids on the dissimilatory iron reduction of red soil in anaerobic condition].
    Xu LN; Li ZP; Che YP
    Huan Jing Ke Xue; 2009 Jan; 30(1):221-6. PubMed ID: 19353884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of lignite humic acid on soil ammonia oxidizing archaea community].
    Dong L; Li B; Yuan H; Scow KM
    Wei Sheng Wu Xue Bao; 2010 Jun; 50(6):780-7. PubMed ID: 20687344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling metabolisms of arsenic and iron with humic substances through microorganisms in paddy soil.
    Yi XY; Yang YP; Yuan HY; Chen Z; Duan GL; Zhu YG
    J Hazard Mater; 2019 Jul; 373():591-599. PubMed ID: 30952004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual Role of Humic Substances As Electron Donor and Shuttle for Dissimilatory Iron Reduction.
    Stern N; Mejia J; He S; Yang Y; Ginder-Vogel M; Roden EE
    Environ Sci Technol; 2018 May; 52(10):5691-5699. PubMed ID: 29658273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compost effect on soil humic acid: A NMR study.
    Adani F; Genevini P; Tambone F; Montoneri E
    Chemosphere; 2006 Nov; 65(8):1414-8. PubMed ID: 16698065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple Effects of Humic Components on Microbially Mediated Iron Redox Processes and Production of Hydroxyl Radicals.
    Han R; Wang Z; Lv J; Zhu Z; Yu GH; Li G; Zhu YG
    Environ Sci Technol; 2022 Nov; 56(22):16419-16427. PubMed ID: 36223591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Underestimation of phosphorus fraction change in the supernatant after phosphorus adsorption onto iron oxides and iron oxide-natural organic matter complexes.
    Yan J; Jiang T; Yao Y; Wang J; Cai Y; Green NW; Wei S
    J Environ Sci (China); 2017 May; 55():197-205. PubMed ID: 28477813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of toluene by humic acids derived from lake sediment and mountain soil at different pH.
    Chang Chien SW; Chen CY; Chang JH; Chen SH; Wang MC; Mannepalli MR
    J Hazard Mater; 2010 May; 177(1-3):1068-76. PubMed ID: 20106594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Removal of humic acids by oxidation and coagulation during Fenton treatment].
    Wu YY; Zhou SQ; Qin FH; Lai YL; Peng HP
    Huan Jing Ke Xue; 2010 Apr; 31(4):996-1001. PubMed ID: 20527182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of Ferrihydrite-Humic Acid Coprecipitates under Iron-Reducing Conditions.
    Mejia J; He S; Yang Y; Ginder-Vogel M; Roden EE
    Environ Sci Technol; 2018 Nov; 52(22):13174-13183. PubMed ID: 30354092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of humic substances derived from swine manure-based compost and correlation of their characteristics with reactivities with heavy metals.
    Chien SW; Wang MC; Huang CC; Seshaiah K
    J Agric Food Chem; 2007 Jun; 55(12):4820-7. PubMed ID: 17497878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Fenton oxidation on soil organic matter and its sorption and desorption of pyrene.
    Sun HW; Yan QS
    J Hazard Mater; 2007 Jun; 144(1-2):164-70. PubMed ID: 17118546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2-Nitrophenol reduction promoted by S. putrefaciens 200 and biogenic ferrous iron: the role of different size-fractions of dissolved organic matter.
    Zhu Z; Tao L; Li F
    J Hazard Mater; 2014 Aug; 279():436-43. PubMed ID: 25093552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenanthrene adsorption by soils treated with humic substances under different pH and temperature conditions.
    Ping L; Luo Y; Wu L; Qian W; Song J; Christie P
    Environ Geochem Health; 2006; 28(1-2):189-95. PubMed ID: 16547763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the role of humic acid on Pd-catalytic electro-Fenton transformation of toluene in groundwater.
    Liao P; Al-Ani Y; Malik Ismael Z; Wu X
    Sci Rep; 2015 Mar; 5():9239. PubMed ID: 25783864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids.
    Clemente R; Bernal MP
    Chemosphere; 2006 Aug; 64(8):1264-73. PubMed ID: 16481023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of natural organic matter in chemical and microbial reduction of ferric iron.
    Chen J; Gu B; Royer RA; Burgos WD
    Sci Total Environ; 2003 May; 307(1-3):167-78. PubMed ID: 12711432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parametric optimization and structural feature analysis of humic acid extraction from lignite.
    Rashid T; Sher F; Jusoh M; Joya TA; Zhang S; Rasheed T; Lima EC
    Environ Res; 2023 Mar; 220():115160. PubMed ID: 36580987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Humic acids from oxidized coals I. Elemental composition, titration curves, heavy metals in HA samples, nuclear magnetic resonance spectra of HAs and infrared spectroscopy.
    Kurková M; Klika Z; Kliková C; Havel J
    Chemosphere; 2004 Feb; 54(8):1237-45. PubMed ID: 14664853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative and mid-infrared changes of humic substances from burned soils.
    Vergnoux A; Guiliano M; Di Rocco R; Domeizel M; Théraulaz F; Doumenq P
    Environ Res; 2011 Feb; 111(2):205-14. PubMed ID: 20362980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.