BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 19354205)

  • 21. Insights into the control of magnetic coupling in the Mn4(III) complex: from ferromagnetic to antiferromagnetic.
    Wang LL; Sun YM; Gao J; Lin XJ; Liu CB
    Dalton Trans; 2010 Nov; 39(42):10249-55. PubMed ID: 20922243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis, structure, properties, and phosphatase-like activity of the first heterodinuclear Fe(III)Mn(II) complex with the unsymmetric ligand H(2)BPBPMP as a model for the PAP in sweet potato.
    Karsten P; Neves A; Bortoluzzi AJ; Lanznaster M; Drago V
    Inorg Chem; 2002 Sep; 41(18):4624-6. PubMed ID: 12206683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron(II) complexes with redox-active tetrazene (RNNNNR) ligands.
    Cowley RE; Bill E; Neese F; Brennessel WW; Holland PL
    Inorg Chem; 2009 Jun; 48(11):4828-36. PubMed ID: 19397284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ga(III) complexes as models for the M(III) site of purple acid phosphatase: ligand effects on the hydrolytic reactivity toward bis(2,4-dinitrophenyl) phosphate.
    Coleman F; Hynes MJ; Erxleben A
    Inorg Chem; 2010 Jul; 49(14):6725-33. PubMed ID: 20565083
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Fe(III)Zn(II) form of recombinant human purple acid phosphatase is not activated by proteolysis.
    Funhoff EG; Bollen M; Averill BA
    J Inorg Biochem; 2005 Feb; 99(2):521-9. PubMed ID: 15621285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-function relationships of purple acid phosphatase from red kidney beans based on heterologously expressed mutants.
    Truong NT; Naseri JI; Vogel A; Rompel A; Krebs B
    Arch Biochem Biophys; 2005 Aug; 440(1):38-45. PubMed ID: 16009331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An unprecedented Fe(III)(mu-OH)Zn(II) complex that mimics the structural and functional properties of purple acid phosphatases.
    Neves A; Lanznaster M; Bortoluzzi AJ; Peralta RA; Casellato A; Castellano EE; Herrald P; Riley MJ; Schenk G
    J Am Chem Soc; 2007 Jun; 129(24):7486-7. PubMed ID: 17518469
    [No Abstract]   [Full Text] [Related]  

  • 28. Observation of redox-induced electron transfer and spin crossover for dinuclear cobalt and iron complexes with the 2,5-di-tert-butyl-3,6-dihydroxy-1,4-benzoquinonate bridging ligand.
    Min KS; Dipasquale AG; Rheingold AL; White HS; Miller JS
    J Am Chem Soc; 2009 May; 131(17):6229-36. PubMed ID: 19358538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theoretical studies on the mechanism of activation of phosphoprotein phosphatases and purple acid phosphatases suggest an evolutionary strategy to survive in acidic environments.
    Zhang H; Ma Y; Yu JG
    J Biol Inorg Chem; 2013 Dec; 18(8):1019-26. PubMed ID: 24142377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The active site of purple acid phosphatase from sweet potatoes (Ipomoea batatas) metal content and spectroscopic characterization.
    Durmus A; Eicken C; Sift BH; Kratel A; Kappl R; Hüttermann J; Krebs B
    Eur J Biochem; 1999 Mar; 260(3):709-16. PubMed ID: 10102999
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical investigation of the reaction mechanism for the phosphate diester hydrolysis using an asymmetric dinuclear metal complex as a biomimetic model of the purple acid phosphatase enzyme.
    Ferreira DE; De Almeida WB; Neves A; Rocha WR
    Phys Chem Chem Phys; 2008 Dec; 10(46):7039-46. PubMed ID: 19030600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Approach to More Accurate Model Systems for Purple Acid Phosphatases (PAPs).
    Bernhardt PV; Bosch S; Comba P; Gahan LR; Hanson GR; Mereacre V; Noble CJ; Powell AK; Schenk G; Wadepohl H
    Inorg Chem; 2015 Aug; 54(15):7249-63. PubMed ID: 26196255
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A family of cyanide-bridged molecular squares: structural and magnetic properties of [{MIICl2}2{CoII(triphos)(CN)2}2].xCH2Cl2, M = Mn, Fe, Co, Ni, Zn.
    Karadas F; Schelter EJ; Shatruk M; Prosvirin AV; Bacsa J; Smirnov D; Ozarowski A; Krzystek J; Telser J; Dunbar KR
    Inorg Chem; 2008 Mar; 47(6):2074-82. PubMed ID: 18275140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of purple acid phosphatase inhibitors by fragment-based screening: promising new leads for osteoporosis therapeutics.
    Feder D; Hussein WM; Clayton DJ; Kan MW; Schenk G; McGeary RP; Guddat LW
    Chem Biol Drug Des; 2012 Nov; 80(5):665-74. PubMed ID: 22943065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Weak antiferromagnetic coupling in molecular ring is predicted correctly by density functional theory plus Hubbard U.
    Gangopadhyay S; Masunov AE; Poalelungi E; Leuenberger MN
    J Chem Phys; 2010 Jun; 132(24):244104. PubMed ID: 20590178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. N-glycosylation influences the latency and catalytic properties of mammalian purple acid phosphatase.
    Wang Y; Norgård M; Andersson G
    Arch Biochem Biophys; 2005 Mar; 435(1):147-56. PubMed ID: 15680916
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined Mössbauer spectral and density functional theory determination of the magnetic easy-axis in two high-spin iron(II) 2-pyrazinecarboxylate complexes.
    Long GJ; Tanase S; Remacle F; Periyasamy G; Grandjean F
    Inorg Chem; 2009 Sep; 48(17):8173-9. PubMed ID: 19630378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A high-spin organometallic Fe-S compound: structural and Mössbauer spectroscopic studies of [phenyltris((tert-butylthio)methyl)borate]Fe(Me).
    Popescu CV; Mock MT; Stoian SA; Dougherty WG; Yap GP; Riordan CG
    Inorg Chem; 2009 Sep; 48(17):8317-24. PubMed ID: 19642622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purple acid phosphatase inhibitors as leads for osteoporosis chemotherapeutics.
    Hussein WM; Feder D; Schenk G; Guddat LW; McGeary RP
    Eur J Med Chem; 2018 Sep; 157():462-479. PubMed ID: 30107365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetic interactions in two heterobridged dinuclear copper(II) complexes: orbital complementarity or countercomplementarity?
    Wang LL; Sun YM; Qi ZN; Liu CB
    J Phys Chem A; 2008 Sep; 112(36):8418-22. PubMed ID: 18710201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.