These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
435 related articles for article (PubMed ID: 19354220)
1. Charge stabilization and entropy reduction of central lysine residues in fructose-bisphosphate aldolase. St-Jean M; Blonski C; Sygusch J Biochemistry; 2009 Jun; 48(21):4528-37. PubMed ID: 19354220 [TBL] [Abstract][Full Text] [Related]
2. Hydroxynaphthaldehyde phosphate derivatives as potent covalent Schiff base inhibitors of fructose-1,6-bisphosphate aldolase. Dax C; Coinçon M; Sygusch J; Blonski C Biochemistry; 2005 Apr; 44(14):5430-43. PubMed ID: 15807536 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of the Schiff base forming fructose-1,6-bisphosphate aldolase: structural analysis of reaction intermediates. Lorentzen E; Siebers B; Hensel R; Pohl E Biochemistry; 2005 Mar; 44(11):4222-9. PubMed ID: 15766250 [TBL] [Abstract][Full Text] [Related]
4. A functional role for a flexible loop containing Glu182 in the class II fructose-1,6-bisphosphate aldolase from Escherichia coli. Zgiby S; Plater AR; Bates MA; Thomson GJ; Berry A J Mol Biol; 2002 Jan; 315(2):131-40. PubMed ID: 11779234 [TBL] [Abstract][Full Text] [Related]
5. Snapshots of catalysis: the structure of fructose-1,6-(bis)phosphate aldolase covalently bound to the substrate dihydroxyacetone phosphate. Choi KH; Shi J; Hopkins CE; Tolan DR; Allen KN Biochemistry; 2001 Nov; 40(46):13868-75. PubMed ID: 11705376 [TBL] [Abstract][Full Text] [Related]
7. Stereospecific proton transfer by a mobile catalyst in mammalian fructose-1,6-bisphosphate aldolase. St-Jean M; Sygusch J J Biol Chem; 2007 Oct; 282(42):31028-37. PubMed ID: 17728250 [TBL] [Abstract][Full Text] [Related]
8. Structure of a fructose-1,6-bis(phosphate) aldolase liganded to its natural substrate in a cleavage-defective mutant at 2.3 A(,). Choi KH; Mazurkie AS; Morris AJ; Utheza D; Tolan DR; Allen KN Biochemistry; 1999 Sep; 38(39):12655-64. PubMed ID: 10504235 [TBL] [Abstract][Full Text] [Related]
9. Identification of arginine 331 as an important active site residue in the class II fructose-1,6-bisphosphate aldolase of Escherichia coli. Qamar S; Marsh K; Berry A Protein Sci; 1996 Jan; 5(1):154-61. PubMed ID: 8771208 [TBL] [Abstract][Full Text] [Related]
10. Lysine-146 of rabbit muscle aldolase is essential for cleavage and condensation of the C3-C4 bond of fructose 1,6-bis(phosphate). Morris AJ; Tolan DR Biochemistry; 1994 Oct; 33(40):12291-7. PubMed ID: 7918450 [TBL] [Abstract][Full Text] [Related]
11. Presteady-state kinetic evidence for a ring-opening activity in fructose-1,6-(bis)phosphate aldolase. Choi KH; Tolan DR J Am Chem Soc; 2004 Mar; 126(11):3402-3. PubMed ID: 15025449 [TBL] [Abstract][Full Text] [Related]
12. Human aldolase A natural mutants: relationship between flexibility of the C-terminal region and enzyme function. Esposito G; Vitagliano L; Costanzo P; Borrelli L; Barone R; Pavone L; Izzo P; Zagari A; Salvatore F Biochem J; 2004 May; 380(Pt 1):51-6. PubMed ID: 14766013 [TBL] [Abstract][Full Text] [Related]
13. Active site remodeling during the catalytic cycle in metal-dependent fructose-1,6-bisphosphate aldolases. Jacques B; Coinçon M; Sygusch J J Biol Chem; 2018 May; 293(20):7737-7753. PubMed ID: 29593097 [TBL] [Abstract][Full Text] [Related]
14. Epimerization via carbon-carbon bond cleavage. L-ribulose-5-phosphate 4-epimerase as a masked class II aldolase. Johnson AE; Tanner ME Biochemistry; 1998 Apr; 37(16):5746-54. PubMed ID: 9548961 [TBL] [Abstract][Full Text] [Related]
15. Converting Transaldolase into Aldolase through Swapping of the Multifunctional Acid-Base Catalyst: Common and Divergent Catalytic Principles in F6P Aldolase and Transaldolase. Sautner V; Friedrich MM; Lehwess-Litzmann A; Tittmann K Biochemistry; 2015 Jul; 54(29):4475-86. PubMed ID: 26131847 [TBL] [Abstract][Full Text] [Related]
17. Substrate-assisted movement of the catalytic Lys 215 during domain closure: site-directed mutagenesis studies of human 3-phosphoglycerate kinase. Flachner B; Varga A; Szabó J; Barna L; Hajdú I; Gyimesi G; Závodszky P; Vas M Biochemistry; 2005 Dec; 44(51):16853-65. PubMed ID: 16363799 [TBL] [Abstract][Full Text] [Related]
18. Conserved residues in the mechanism of the E. coli Class II FBP-aldolase. Plater AR; Zgiby SM; Thomson GJ; Qamar S; Wharton CW; Berry A J Mol Biol; 1999 Jan; 285(2):843-55. PubMed ID: 9878448 [TBL] [Abstract][Full Text] [Related]
19. A lysine to arginine substitution at position 146 of rabbit aldolase A changes the rate-determining step to Schiff base formation. Morris AJ; Davenport RC; Tolan DR Protein Eng; 1996 Jan; 9(1):61-7. PubMed ID: 9053904 [TBL] [Abstract][Full Text] [Related]
20. Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases. Zgiby SM; Thomson GJ; Qamar S; Berry A Eur J Biochem; 2000 Mar; 267(6):1858-68. PubMed ID: 10712619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]