These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 19354226)

  • 1. Optical properties of the crescent-shaped nanohole antenna.
    Wu LY; Ross BM; Lee LP
    Nano Lett; 2009 May; 9(5):1956-61. PubMed ID: 19354226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Area Fabrication of Complex Nanohole Arrays with Highly Tunable Plasmonic Properties.
    Wang Y; Chong HB; Zhang Z; Zhao Y
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37435-37443. PubMed ID: 32698576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
    Pang JS; Theodorou IG; Centeno A; Petrov PK; Alford NM; Ryan MP; Xie F
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23083-23092. PubMed ID: 31252484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic and SERS performances of compound nanohole arrays fabricated by shadow sphere lithography.
    Skehan C; Ai B; Larson SR; Stone KM; Dennis WM; Zhao Y
    Nanotechnology; 2018 Mar; 29(9):095301. PubMed ID: 29320374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Millimeter-Sized Suspended Plasmonic Nanohole Arrays for Surface-Tension-Driven Flow-Through SERS.
    Kumar S; Cherukulappurath S; Johnson TW; Oh SH
    Chem Mater; 2014 Nov; 26(22):6523-6530. PubMed ID: 25678744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new generation of sensors based on extraordinary optical transmission.
    Gordon R; Sinton D; Kavanagh KL; Brolo AG
    Acc Chem Res; 2008 Aug; 41(8):1049-57. PubMed ID: 18605739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bridged-bowtie and cross bridged-bowtie nanohole arrays as SERS substrates with hotspot tunability and multi-wavelength SERS response.
    Gupta N; Dhawan A
    Opt Express; 2018 Jul; 26(14):17899-17915. PubMed ID: 30114073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanohole arrays in chemical analysis: manufacturing methods and applications.
    Masson JF; Murray-Méthot MP; Live LS
    Analyst; 2010 Jul; 135(7):1483-9. PubMed ID: 20358096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical and physical optimization of nanohole-array sensors prepared by modified nanosphere lithography.
    Murray-Methot MP; Menegazzo N; Masson JF
    Analyst; 2008 Dec; 133(12):1714-21. PubMed ID: 19082074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The extraordinary optical transmission and sensing properties of Ag/Ti composite nanohole arrays.
    Larson S; Carlson D; Ai B; Zhao Y
    Phys Chem Chem Phys; 2019 Feb; 21(7):3771-3780. PubMed ID: 30706926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral plasmonic nanocrescents: large-area fabrication and optical properties.
    Bochenkov VE; Sutherland DS
    Opt Express; 2018 Oct; 26(21):27101-27108. PubMed ID: 30469784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoplasmonic Semitransparent Nanohole Electrodes.
    Tordera D; Zhao D; Volkov AV; Crispin X; Jonsson MP
    Nano Lett; 2017 May; 17(5):3145-3151. PubMed ID: 28441500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-Enhanced Fluorescence of EGFP on Short-Range Ordered Ag Nanohole Arrays.
    Bochenkov VE; Lobanova EM; Shakhov AM; Astafiev AA; Bogdanov AM; Timoshenko VA; Bochenkova AV
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33419362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-Scale Plasmonic Hybrid Framework with Built-In Nanohole Array as Multifunctional Optical Sensing Platforms.
    Wang X; Ma X; Shi E; Lu P; Dou L; Zhang X; Wang H
    Small; 2020 Mar; 16(11):e1906459. PubMed ID: 32072751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Adsorption of DNA Origami Nanostructures in Nanohole Arrays.
    Brassat K; Ramakrishnan S; Bürger J; Hanke M; Doostdar M; Lindner JKN; Grundmeier G; Keller A
    Langmuir; 2018 Dec; 34(49):14757-14765. PubMed ID: 29754490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors.
    Escobedo C; Brolo AG; Gordon R; Sinton D
    Anal Chem; 2010 Dec; 82(24):10015-20. PubMed ID: 21080637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interferometric Plasmonic Lensing with Nanohole Arrays.
    Gong Y; Joly AG; El-Khoury PZ; Hess WP
    J Phys Chem Lett; 2014 Dec; 5(24):4243-8. PubMed ID: 26273969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct fabrication and characterization of gold nanohole arrays.
    Mao F; Ngo GL; Nguyen CT; Ledoux-Rak I; Lai ND
    Opt Express; 2021 Sep; 29(19):29841-29856. PubMed ID: 34614721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring Nanohole Plasmonic Resonance with Light-Responsive Azobenzene Compound.
    Zhang G; Hsu C; Lan C; Gao R; Wen Y; Zhou J
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2254-2263. PubMed ID: 30569700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration of extrinsic chirality in self-assembled asymmetric plasmonic metasurfaces and nanohole arrays.
    Petronijevic E; Cesca T; Scian C; Mattei G; Voti RL; Sibilia C; Belardini A
    Sci Rep; 2024 Jul; 14(1):17210. PubMed ID: 39060402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.