These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 19354283)

  • 1. Solar water oxidation by composite catalyst/alpha-Fe(2)O(3) photoanodes.
    Zhong DK; Sun J; Inumaru H; Gamelin DR
    J Am Chem Soc; 2009 May; 131(17):6086-7. PubMed ID: 19354283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoelectrochemical water oxidation by cobalt catalyst ("Co-Pi")/alpha-Fe(2)O(3) composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck.
    Zhong DK; Gamelin DR
    J Am Chem Soc; 2010 Mar; 132(12):4202-7. PubMed ID: 20201513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water splitting with silver chloride photoanodes and amorphous silicon solar cells.
    Currao A; Reddy VR; van Veen MK; Schropp RE; Calzaferri G
    Photochem Photobiol Sci; 2004; 3(11-12):1017-25. PubMed ID: 15570389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-complete suppression of surface recombination in solar photoelectrolysis by "Co-Pi" catalyst-modified W:BiVO4.
    Zhong DK; Choi S; Gamelin DR
    J Am Chem Soc; 2011 Nov; 133(45):18370-7. PubMed ID: 21942320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst.
    Seabold JA; Choi KS
    J Am Chem Soc; 2012 Feb; 134(4):2186-92. PubMed ID: 22263661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation.
    Kim ES; Kang HJ; Magesh G; Kim JY; Jang JW; Lee JS
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17762-9. PubMed ID: 25232699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: use for photoelectrochemical water splitting.
    Mao A; Park NG; Han GY; Park JH
    Nanotechnology; 2011 Apr; 22(17):175703. PubMed ID: 21411913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoporous α-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation.
    Hamd W; Cobo S; Fize J; Baldinozzi G; Schwartz W; Reymermier M; Pereira A; Fontecave M; Artero V; Laberty-Robert C; Sanchez C
    Phys Chem Chem Phys; 2012 Oct; 14(38):13224-32. PubMed ID: 22911106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Electrocatalyst Activity and Ion Permeability on Water-Splitting Photoanodes.
    Lin F; Bachman BF; Boettcher SW
    J Phys Chem Lett; 2015 Jul; 6(13):2427-33. PubMed ID: 26266713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic layer deposition of a submonolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite.
    Riha SC; Klahr BM; Tyo EC; Seifert S; Vajda S; Pellin MJ; Hamann TW; Martinson AB
    ACS Nano; 2013 Mar; 7(3):2396-405. PubMed ID: 23398051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new hematite photoanode doping strategy for solar water splitting: oxygen vacancy generation.
    Yang TY; Kang HY; Sim U; Lee YJ; Lee JH; Koo B; Nam KT; Joo YC
    Phys Chem Chem Phys; 2013 Feb; 15(6):2117-24. PubMed ID: 23288103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoelectrochemical water oxidation efficiency of a core/shell array photoanode enhanced by a dual suppression strategy.
    He W; Yang Y; Wang L; Yang J; Xiang X; Yan D; Li F
    ChemSusChem; 2015 May; 8(9):1568-76. PubMed ID: 25711390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Bicontinuous BiVO
    Kim K; Moon JH
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34238-34244. PubMed ID: 30265510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of oxygen evolution at α-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy.
    Upul Wijayantha KG; Saremi-Yarahmadi S; Peter LM
    Phys Chem Chem Phys; 2011 Mar; 13(12):5264-70. PubMed ID: 21229167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting.
    Lin Y; Xu Y; Mayer MT; Simpson ZI; McMahon G; Zhou S; Wang D
    J Am Chem Soc; 2012 Mar; 134(12):5508-11. PubMed ID: 22397372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping.
    Cesar I; Kay A; Gonzalez Martinez JA; Grätzel M
    J Am Chem Soc; 2006 Apr; 128(14):4582-3. PubMed ID: 16594689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces.
    Yang J; Walczak K; Anzenberg E; Toma FM; Yuan G; Beeman J; Schwartzberg A; Lin Y; Hettick M; Javey A; Ager JW; Yano J; Frei H; Sharp ID
    J Am Chem Soc; 2014 Apr; 136(17):6191-4. PubMed ID: 24720554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency.
    Li Y; Zhang L; Torres-Pardo A; González-Calbet JM; Ma Y; Oleynikov P; Terasaki O; Asahina S; Shima M; Cha D; Zhao L; Takanabe K; Kubota J; Domen K
    Nat Commun; 2013; 4():2566. PubMed ID: 24089138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting.
    Qi X; She G; Huang X; Zhang T; Wang H; Mu L; Shi W
    Nanoscale; 2014 Mar; 6(6):3182-9. PubMed ID: 24500641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.