These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 19354381)

  • 1. A wave-based finite element analysis for acoustic transmission in fluid-filled elastic waveguides.
    Peplow AT
    J Acoust Soc Am; 2009 Apr; 125(4):2053-63. PubMed ID: 19354381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the sound field above a patchwork of absorbing materials.
    Lanoye R; Vermeir G; Lauriks W; Sgard F; Desmet W
    J Acoust Soc Am; 2008 Feb; 123(2):793-802. PubMed ID: 18247884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling sound propagation in acoustic waveguides using a hybrid numerical method.
    Kirby R
    J Acoust Soc Am; 2008 Oct; 124(4):1930-40. PubMed ID: 19062832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical and experimental validation of a hybrid finite element-statistical energy analysis method.
    Cotoni V; Shorter P; Langley R
    J Acoust Soc Am; 2007 Jul; 122(1):259-70. PubMed ID: 17614486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-analytical finite element analysis of elastic waveguides subjected to axial loads.
    Loveday PW
    Ultrasonics; 2009 Mar; 49(3):298-300. PubMed ID: 19108858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The computation of dispersion relations for axisymmetric waveguides using the Scaled Boundary Finite Element Method.
    Gravenkamp H; Birk C; Song C
    Ultrasonics; 2014 Jul; 54(5):1373-85. PubMed ID: 24594445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of acoustic radiation from axisymmetric surfaces with arbitrary boundary conditions using the boundary element method on a distributed computing system.
    Wright L; Robinson SP; Humphrey VF
    J Acoust Soc Am; 2009 Mar; 125(3):1374-83. PubMed ID: 19275294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmark problems for acoustic scattering from elastic objects in the free field and near the seafloor.
    Zampolli M; Jensen FB; Tesei A
    J Acoust Soc Am; 2009 Jan; 125(1):89-98. PubMed ID: 19173397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boundary element analyses for sound transmission loss of panels.
    Zhou R; Crocker MJ
    J Acoust Soc Am; 2010 Feb; 127(2):829-40. PubMed ID: 20136206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave characterization of cylindrical and curved panels using a finite element method.
    Manconi E; Mace BR
    J Acoust Soc Am; 2009 Jan; 125(1):154-63. PubMed ID: 19173402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the vibro-acoustic behavior of a submerged shell non periodically stiffened by internal frames.
    Maxit L; Ginoux JM
    J Acoust Soc Am; 2010 Jul; 128(1):137-51. PubMed ID: 20649209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multilevel fast multipole algorithm for acoustic wave scattering by truncated ground with trenches.
    Tong MS; Chew WC; White MJ
    J Acoust Soc Am; 2008 May; 123(5):2513-21. PubMed ID: 18529170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full-wave analysis of piezoelectric boundary waves propagating along metallic grating sandwiched between two semi-infinite layers.
    Wang Y; Hashimoto KY; Omori T; Yamaguchi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):806-11. PubMed ID: 19406709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite-element modeling of depth and range dependent acoustic propagation in oceanic waveguides.
    Vendhan CP; Diwan GC; Bhattacharyya SK
    J Acoust Soc Am; 2010 Jun; 127(6):3319-26. PubMed ID: 20550232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical investigation of elastic modes of propagation in helical waveguides.
    Treyssède F
    J Acoust Soc Am; 2007 Jun; 121(6):3398-408. PubMed ID: 17552691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural-acoustic modeling for three-dimensional freefield and littoral environments with verification and validation.
    Dey S; Sarkissian A; Simpson H; Houston BH; Bulat FA; Kraus L; Saniga M; Bucaro JA
    J Acoust Soc Am; 2011 May; 129(5):2979-90. PubMed ID: 21568401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraction of dispersion curves for waves propagating in free complex waveguides by standard finite element codes.
    Sorohan S; Constantin N; Găvan M; Anghel V
    Ultrasonics; 2011 May; 51(4):503-15. PubMed ID: 21208634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical time-domain modeling of linear and nonlinear ultrasonic wave propagation using finite integration techniques--theory and applications.
    Schubert F
    Ultrasonics; 2004 Apr; 42(1-9):221-9. PubMed ID: 15047289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of wave dispersion along cylindrical structures using the spectral method.
    Karpfinger F; Gurevich B; Bakulin A
    J Acoust Soc Am; 2008 Aug; 124(2):859-65. PubMed ID: 18681578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy concentration at the center of large aspect ratio rectangular waveguides at high frequencies.
    Cegla FB
    J Acoust Soc Am; 2008 Jun; 123(6):4218-26. PubMed ID: 18537373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.