These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 19354381)

  • 61. Numerical and analytical calculation of modal excitability for elastic wave generation in lossy waveguides.
    Treyssède F; Laguerre L
    J Acoust Soc Am; 2013 Jun; 133(6):3827-37. PubMed ID: 23742337
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Source implementation to eliminate low-frequency artifacts in finite difference time domain room acoustic simulation.
    Jeong H; Lam YW
    J Acoust Soc Am; 2012 Jan; 131(1):258-68. PubMed ID: 22280589
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Modal decomposition of exterior acoustic-structure interaction problems with model order reduction.
    Peters H; Kessissoglou N; Marburg S
    J Acoust Soc Am; 2014 May; 135(5):2706-17. PubMed ID: 24815254
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Theoretical analyses and numerical simulations of the torsional mode for two acoustic viscometers with preliminary experimental tests.
    Ai Y; Lange RA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):648-58. PubMed ID: 18407854
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Distributed parameters deterministic model for treatment of brain tumors using Galerkin finite element method.
    Chakrabarty SP; Hanson FB
    Math Biosci; 2009 Jun; 219(2):129-41. PubMed ID: 19345698
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nonlinear ultrasonic resonators: a numerical analysis in the time domain.
    Vanhille C; Campos-Pozuelo C
    Ultrasonics; 2006 Dec; 44 Suppl 1():e777-81. PubMed ID: 16781751
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bloch-wave expansion technique for predicting wave reflection and transmission in two-dimensional phononic crystals.
    Kulpe JA; Sabra KG; Leamy MJ
    J Acoust Soc Am; 2014 Apr; 135(4):1808-19. PubMed ID: 25234980
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Convolution quadrature methods for time-domain scattering from unbounded penetrable interfaces.
    Labarca I; Faria LM; Pérez-Arancibia C
    Proc Math Phys Eng Sci; 2019 Jul; 475(2227):20190029. PubMed ID: 31423089
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Prediction of sound transmission through, and radiation from, panels using a wave and finite element method.
    Yang Y; Mace BR; Kingan MJ
    J Acoust Soc Am; 2017 Apr; 141(4):2452. PubMed ID: 28464678
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering.
    Perrey-Debain E; Laghrouche O; Bettess P; Trevelyan J
    Philos Trans A Math Phys Eng Sci; 2004 Mar; 362(1816):561-77. PubMed ID: 15306508
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Elastodynamic wave scattering by finite-sized resonant scatterers at the surface of a horizontally layered halfspace.
    Lombaert G; Clouteau D
    J Acoust Soc Am; 2009 Apr; 125(4):2041-52. PubMed ID: 19354380
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Finite element analysis of Brillouin gain in SBS-suppressing optical fibers with non-uniform acoustic velocity profiles.
    Ward B; Spring J
    Opt Express; 2009 Aug; 17(18):15685-99. PubMed ID: 19724568
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A hybrid finite element approach to modeling sound radiation from circular and rectangular ducts.
    Duan W; Kirby R
    J Acoust Soc Am; 2012 May; 131(5):3638-49. PubMed ID: 22559341
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Simulation of leaky Rayleigh wave at air-solid cylindrical interfaces by finite element method.
    Zhao Y; Shen Z; Lu J; Ni X
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1169-72. PubMed ID: 16814831
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Full-circular surface acoustic wave excitation for high resolution acoustic microscopy using spherical lens and time gate technology.
    Ishikawa I; Katakura K; Ogura Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):41-6. PubMed ID: 18238397
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Simulations of thermally induced photoacoustic wave propagation using a pseudospectral time-domain method.
    Sheu YL; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1104-12. PubMed ID: 19473928
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The aero-acoustic Galbrun equation in the time domain with perfectly matched layer boundary conditions.
    Feng X; Ben Tahar M; Baccouche R
    J Acoust Soc Am; 2016 Jan; 139(1):320-31. PubMed ID: 26827028
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Finite element model for waves guided along solid systems of arbitrary section coupled to infinite solid media.
    Castaings M; Lowe M
    J Acoust Soc Am; 2008 Feb; 123(2):696-708. PubMed ID: 18247874
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A semi-analytical model for predicting multiple propagating axially symmetric modes in cylindrical waveguides.
    Puckett AD; Peterson ML
    Ultrasonics; 2005 Jan; 43(3):197-207. PubMed ID: 15556654
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The Partition of Unity Finite Element Method for the simulation of waves in air and poroelastic media.
    Chazot JD; Perrey-Debain E; Nennig B
    J Acoust Soc Am; 2014 Feb; 135(2):724-33. PubMed ID: 25234881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.