These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 19354382)

  • 1. A correction of random incidence absorption coefficients for the angular distribution of acoustic energy under measurement conditions.
    Jeong CH
    J Acoust Soc Am; 2009 Apr; 125(4):2064-71. PubMed ID: 19354382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-uniform sound intensity distributions when measuring absorption coefficients in reverberation chambers using a phased beam tracing.
    Jeong CH
    J Acoust Soc Am; 2010 Jun; 127(6):3560-8. PubMed ID: 20550256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The directivity of the sound radiation from panels and openings.
    Davy JL
    J Acoust Soc Am; 2009 Jun; 125(6):3795-805. PubMed ID: 19507962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental characterization of the sound field in a reverberation room.
    Nolan M; Verburg SA; Brunskog J; Fernandez-Grande E
    J Acoust Soc Am; 2019 Apr; 145(4):2237. PubMed ID: 31046301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of energy decay in room impulse responses simulated with an image-source model.
    Lehmann EA; Johansson AM
    J Acoust Soc Am; 2008 Jul; 124(1):269-77. PubMed ID: 18646975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On boundary conditions for the diffusion equation in room-acoustic prediction: Theory, simulations, and experiments.
    Jing Y; Xiang N
    J Acoust Soc Am; 2008 Jan; 123(1):145-53. PubMed ID: 18177146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of three measurement techniques for the normal absorption coefficient of sound absorbing materials in the free field.
    Hirosawa K; Takashima K; Nakagawa H; Kon M; Yamamoto A; Lauriks W
    J Acoust Soc Am; 2009 Dec; 126(6):3020-7. PubMed ID: 20000915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the sound transmission between rooms coupled through partition walls by using a diffusion model.
    Billon A; Foy C; Picaut J; Valeau V; Sakout A
    J Acoust Soc Am; 2008 Jun; 123(6):4261-71. PubMed ID: 18537377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of sound transmission loss through multilayered panels by using Gaussian distribution of directional incident energy.
    Kang HJ; Ih JG; Kim JS; Kim HS
    J Acoust Soc Am; 2000 Mar; 107(3):1413-20. PubMed ID: 10738796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of the absorption coefficient of sound absorbing materials under a synthesized diffuse acoustic field.
    Robin O; Berry A; Doutres O; Atalla N
    J Acoust Soc Am; 2014 Jul; 136(1):EL13-9. PubMed ID: 24993232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A note on determination of the diffuse-field sensitivity of microphones using the reciprocity technique.
    Barrera-Figueroa S; Rasmussen K; Jacobsen F
    J Acoust Soc Am; 2008 Sep; 124(3):1505-12. PubMed ID: 19045642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a method for the measurement of subwoofers in usual rooms.
    Melon M; Langrenne C; Herzog P; Garcia A
    J Acoust Soc Am; 2010 Jan; 127(1):256-63. PubMed ID: 20058971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers.
    Ottink M; Brunskog J; Jeong CH; Fernandez-Grande E; Trojgaard P; Tiana-Roig E
    J Acoust Soc Am; 2016 Jan; 139(1):41-52. PubMed ID: 26827003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring hybrid passive-active sound absorption of a microperforated liner at oblique incidence.
    Cobo P; Cuesta M
    J Acoust Soc Am; 2009 Jan; 125(1):185-90. PubMed ID: 19173405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of sound power and absorption in reverberation chambers using energy density.
    Nutter DB; Leishman TW; Sommerfeldt SD; Blotter JD
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2700-10. PubMed ID: 17550170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approximate theory of reverberation in rectangular rooms with specular and diffuse reflections.
    Sakuma T
    J Acoust Soc Am; 2012 Oct; 132(4):2325-36. PubMed ID: 23039429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability of estimating the room volume from a single room impulse response.
    Kuster M
    J Acoust Soc Am; 2008 Aug; 124(2):982-93. PubMed ID: 18681590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sound propagation in and low frequency noise absorption by helium-filled porous material.
    Choy YS; Huang L; Wang C
    J Acoust Soc Am; 2009 Dec; 126(6):3008-19. PubMed ID: 20000914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introducing atmospheric attenuation within a diffusion model for room-acoustic predictions.
    Billon A; Picaut J; Foy C; Valeau V; Sakout A
    J Acoust Soc Am; 2008 Jun; 123(6):4040-3. PubMed ID: 18537354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying sound-field diffuseness in small rooms using multifractals.
    Loutridis SJ
    J Acoust Soc Am; 2009 Mar; 125(3):1498-505. PubMed ID: 19275308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.