These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 19354389)

  • 1. Estimating the operating point of the cochlear transducer using low-frequency biased distortion products.
    Brown DJ; Hartsock JJ; Gill RM; Fitzgerald HE; Salt AN
    J Acoust Soc Am; 2009 Apr; 125(4):2129-45. PubMed ID: 19354389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP-gamma-S shifts the operating point of outer hair cell transduction towards scala tympani.
    Bobbin RP; Salt AN
    Hear Res; 2005 Jul; 205(1-2):35-43. PubMed ID: 15953513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cochlear transducer operating point adaptation.
    Zou Y; Zheng J; Ren T; Nuttall A
    J Acoust Soc Am; 2006 Apr; 119(4):2232-41. PubMed ID: 16642838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage-dependent elements are involved in the generation of the cochlear microphonic and the sound-induced resistance changes measured in scala media of the guinea pig.
    Mountain DC; Hubbard AE; Geisler CD
    Hear Res; 1980 Oct; 3(3):215-29. PubMed ID: 7440425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of transducer operating point on distortion generation in the cochlea.
    Sirjani DB; Salt AN; Gill RM; Hale SA
    J Acoust Soc Am; 2004 Mar; 115(3):1219-29. PubMed ID: 15058343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Displacements of the organ of Corti by gel injections into the cochlear apex.
    Salt AN; Brown DJ; Hartsock JJ; Plontke SK
    Hear Res; 2009 Apr; 250(1-2):63-75. PubMed ID: 19217935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cochlear microphonic evidence for mechanical propagation of distortion products (f2 - f1) and (2f1 - f2).
    Gibian GL; Kim DO
    Hear Res; 1982 Jan; 6(1):35-59. PubMed ID: 7054135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caffeine and ryanodine demonstrate a role for the ryanodine receptor in the organ of Corti.
    Bobbin RP
    Hear Res; 2002 Dec; 174(1-2):172-82. PubMed ID: 12433408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loud sound-induced changes in cochlear mechanics.
    Fridberger A; Zheng J; Parthasarathi A; Ren T; Nuttall A
    J Neurophysiol; 2002 Nov; 88(5):2341-8. PubMed ID: 12424275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The spectral content of the cochlear microphonic measured in scala media of the guinea pig cochlea.
    Hubbard AE; Mountain DC; Geisler CD
    J Acoust Soc Am; 1979 Aug; 66(2):415-30. PubMed ID: 512203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the nonlinearity governing even-order distortion products in cochlear potentials.
    van Emst MG; Klis SF; Smoorenburg GF
    Hear Res; 1997 Dec; 114(1-2):93-101. PubMed ID: 9447923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contralateral auditory stimulation alters acoustic distortion products in humans.
    Moulin A; Collet L; Duclaux R
    Hear Res; 1993 Feb; 65(1-2):193-210. PubMed ID: 8458751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distortion-product otoacoustic emissions and cochlear microphonics: relationships in patients with and without endolymphatic hydrops.
    Fetterman BL
    Laryngoscope; 2001 Jun; 111(6):946-54. PubMed ID: 11404602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation at the guinea pig round window of summating potentials and compound action potentials by low-frequency sound.
    Klis JF; Smoorenburg GF
    Hear Res; 1985; 20(1):15-23. PubMed ID: 4077742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-frequency modulation of inner hair cell and organ of Corti responses in the guinea pig cochlea.
    Cheatham MA; Dallos P
    Hear Res; 1997 Jun; 108(1-2):191-212. PubMed ID: 9213131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ear canal acoustic and round window electrical correlates of 2f1-f2 distortion generated in the cochlea.
    Kemp DT; Brown AM
    Hear Res; 1984 Jan; 13(1):39-46. PubMed ID: 6706861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sound pressures in the basal turn of the cat cochlea.
    Nedzelnitsky V
    J Acoust Soc Am; 1980 Dec; 68(6):1676-89. PubMed ID: 7462467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological responses in guinea pig cochlea to low frequency sound stimuli: distortion of cochlear microphonic (CM) wave form.
    Maehara N; Sadamoto T; Yamamura K
    Eur J Appl Physiol Occup Physiol; 1983; 51(1):85-95. PubMed ID: 6684037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma.
    Patuzzi RB; Yates GK; Johnstone BM
    Hear Res; 1989 May; 39(1-2):189-202. PubMed ID: 2737965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of the DPOAE amplitude pattern on acoustical biasing of the cochlear partition.
    Lukashkin AN; Russell IJ
    Hear Res; 2005 May; 203(1-2):45-53. PubMed ID: 15855029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.