BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19355984)

  • 1. Computational modeling of intramolecular and intermolecular communication in GPCRs.
    Fanelli F; De Benedetti PG; Raimondi F; Seeber M
    Curr Protein Pept Sci; 2009 Apr; 10(2):173-85. PubMed ID: 19355984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of inter- and intramolecular communication in GPCRs and G proteins.
    Raimondi F; Seeber M; Benedetti PG; Fanelli F
    J Am Chem Soc; 2008 Apr; 130(13):4310-25. PubMed ID: 18335928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function.
    Kristiansen K
    Pharmacol Ther; 2004 Jul; 103(1):21-80. PubMed ID: 15251227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state.
    Rovati GE; Capra V; Neubig RR
    Mol Pharmacol; 2007 Apr; 71(4):959-64. PubMed ID: 17192495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and kinetic modeling of an activating helix switch in the rhodopsin-transducin interface.
    Scheerer P; Heck M; Goede A; Park JH; Choe HW; Ernst OP; Hofmann KP; Hildebrand PW
    Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10660-5. PubMed ID: 19541654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Structural Framework for GPCR Chemogenomics: What's In a Residue Number?
    Vass M; Kooistra AJ; Verhoeven S; Gloriam D; de Esch IJP; de Graaf C
    Methods Mol Biol; 2018; 1705():73-113. PubMed ID: 29188559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of privileged structures by G-protein coupled receptors.
    Bondensgaard K; Ankersen M; Thøgersen H; Hansen BS; Wulff BS; Bywater RP
    J Med Chem; 2004 Feb; 47(4):888-99. PubMed ID: 14761190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Molecular Basis of G Protein-Coupled Receptor Activation.
    Weis WI; Kobilka BK
    Annu Rev Biochem; 2018 Jun; 87():897-919. PubMed ID: 29925258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Domain coupling in GPCRs: the engine for induced conformational changes.
    Unal H; Karnik SS
    Trends Pharmacol Sci; 2012 Feb; 33(2):79-88. PubMed ID: 22037017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 7TM Domain Structure of Adhesion GPCRs.
    de Graaf C; Nijmeijer S; Wolf S; Ernst OP
    Handb Exp Pharmacol; 2016; 234():43-66. PubMed ID: 27832483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactive and active states and supramolecular organization of GPCRs: insights from computational modeling.
    Fanelli F; De Benedetti PG
    J Comput Aided Mol Des; 2006; 20(7-8):449-61. PubMed ID: 17009093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of G protein-selective G protein-coupled receptor (GPCR) conformations in live cells.
    Malik RU; Ritt M; DeVree BT; Neubig RR; Sunahara RK; Sivaramakrishnan S
    J Biol Chem; 2013 Jun; 288(24):17167-78. PubMed ID: 23629648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A G protein-coupled receptor at work: the rhodopsin model.
    Hofmann KP; Scheerer P; Hildebrand PW; Choe HW; Park JH; Heck M; Ernst OP
    Trends Biochem Sci; 2009 Nov; 34(11):540-52. PubMed ID: 19836958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charged extracellular residues, conserved throughout a G-protein-coupled receptor family, are required for ligand binding, receptor activation, and cell-surface expression.
    Hawtin SR; Simms J; Conner M; Lawson Z; Parslow RA; Trim J; Sheppard A; Wheatley M
    J Biol Chem; 2006 Dec; 281(50):38478-88. PubMed ID: 16990262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forced unbinding of GPR17 ligands from wild type and R255I mutant receptor models through a computational approach.
    Parravicini C; Abbracchio MP; Fantucci P; Ranghino G
    BMC Struct Biol; 2010 Mar; 10():8. PubMed ID: 20233425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. G protein-coupled receptor transmembrane binding pockets and their applications in GPCR research and drug discovery: a survey.
    Kratochwil NA; Gatti-McArthur S; Hoener MC; Lindemann L; Christ AD; Green LG; Guba W; Martin RE; Malherbe P; Porter RH; Slack JP; Winnig M; Dehmlow H; Grether U; Hertel C; Narquizian R; Panousis CG; Kolczewski S; Steward L
    Curr Top Med Chem; 2011; 11(15):1902-24. PubMed ID: 21470172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutagenesis and computer modeling studies of a GPCR conserved residue W5.43(194) in ligand recognition and signal transduction for CB2 receptor.
    Zhang Y; Xie Z; Wang L; Schreiter B; Lazo JS; Gertsch J; Xie XQ
    Int Immunopharmacol; 2011 Sep; 11(9):1303-10. PubMed ID: 21539938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic Use of GPCR Modeling and SDM Experiments to Understand Ligand Binding.
    Potterton A; Heifetz A; Townsend-Nicholson A
    Methods Mol Biol; 2018; 1705():335-343. PubMed ID: 29188570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling small molecule-compound binding to G-protein-coupled receptors.
    Vaidehi N; Pease JE; Horuk R
    Methods Enzymol; 2009; 460():263-88. PubMed ID: 19446730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.