These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 19356706)

  • 1. Electrical impedance measurements predict cellular transformation.
    Park G; Choi CK; English AE; Sparer TE
    Cell Biol Int; 2009 Mar; 33(3):429-33. PubMed ID: 19356706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Point mutation causing constitutive signaling of CXCR2 leads to transforming activity similar to Kaposi's sarcoma herpesvirus-G protein-coupled receptor.
    Burger M; Burger JA; Hoch RC; Oades Z; Takamori H; Schraufstatter IU
    J Immunol; 1999 Aug; 163(4):2017-22. PubMed ID: 10438939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening for novel constitutively active CXCR2 mutants and their cellular effects.
    Park G; Masi T; Choi CK; Kim H; Becker JM; Sparer TE
    Methods Enzymol; 2010; 485():481-97. PubMed ID: 21050933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS).
    Xiao C; Luong JH
    Biotechnol Prog; 2003; 19(3):1000-5. PubMed ID: 12790667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time electrical impedance detection of cellular activities of oral cancer cells.
    Arias LR; Perry CA; Yang L
    Biosens Bioelectron; 2010 Jun; 25(10):2225-31. PubMed ID: 20304624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational modeling and analysis in cell biological dynamics using electric cell-substrate impedance sensing (ECIS).
    Chen SW; Yang JM; Yang JH; Yang SJ; Wang JS
    Biosens Bioelectron; 2012 Mar; 33(1):196-203. PubMed ID: 22261483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of cellular electrical impedance sensing to assess in vitro cytotoxicity of anticancer drugs in a human kidney cell nephrotoxicity model.
    Xie F; Xu Y; Wang L; Mitchelson K; Xing W; Cheng J
    Analyst; 2012 Mar; 137(6):1343-50. PubMed ID: 22214987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An automatic and quantitative on-chip cell migration assay using self-assembled monolayers combined with real-time cellular impedance sensing.
    Wang L; Zhu J; Deng C; Xing WL; Cheng J
    Lab Chip; 2008 Jun; 8(6):872-8. PubMed ID: 18497905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of cytotoxicity by emerging impedance spectroscopy.
    Xiao C; Luong JH
    Toxicol Appl Pharmacol; 2005 Aug; 206(2):102-12. PubMed ID: 15967198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS).
    Price DT; Rahman AR; Bhansali S
    Biosens Bioelectron; 2009 Mar; 24(7):2071-6. PubMed ID: 19101134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of SMYD3 overexpression on transformation, serum dependence, and apoptosis sensitivity in NIH3T3 cells.
    Luo XG; Xi T; Guo S; Liu ZP; Wang N; Jiang Y; Zhang TC
    IUBMB Life; 2009 Jun; 61(6):679-84. PubMed ID: 19472189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical cell-substrate impedance sensing as a non-invasive tool for cancer cell study.
    Hong J; Kandasamy K; Marimuthu M; Choi CS; Kim S
    Analyst; 2011 Jan; 136(2):237-45. PubMed ID: 20963234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric cell-substrate impedance sensing (ECIS) based real-time measurement of titer dependent cytotoxicity induced by adenoviral vectors in an IPI-2I cell culture model.
    Müller J; Thirion C; Pfaffl MW
    Biosens Bioelectron; 2011 Jan; 26(5):2000-5. PubMed ID: 20875729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a putative intracellular allosteric antagonist binding-site in the CXC chemokine receptors 1 and 2.
    Nicholls DJ; Tomkinson NP; Wiley KE; Brammall A; Bowers L; Grahames C; Gaw A; Meghani P; Shelton P; Wright TJ; Mallinder PR
    Mol Pharmacol; 2008 Nov; 74(5):1193-202. PubMed ID: 18676678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring viral-induced cell death using electric cell-substrate impedance sensing.
    Campbell CE; Laane MM; Haugarvoll E; Giaever I
    Biosens Bioelectron; 2007 Nov; 23(4):536-42. PubMed ID: 17826975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of electric cell-substrate impedance sensing as a tool for quantifying cytopathic effect in influenza A virus infected MDCK cells in real-time.
    McCoy MH; Wang E
    J Virol Methods; 2005 Dec; 130(1-2):157-61. PubMed ID: 16095727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors.
    Wang L; Wang H; Wang L; Mitchelson K; Yu Z; Cheng J
    Biosens Bioelectron; 2008 Sep; 24(1):14-21. PubMed ID: 18511255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Morphological transformation of mouse NIH3T3 cells induced by nickel refining dusts in vitro].
    Wu YH; Xiao Y; Zhang ZY; Yang BF
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2003 Jun; 21(3):175-8. PubMed ID: 14761477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time monitoring primary cardiomyocyte adhesion based on electrochemical impedance spectroscopy and electrical cell-substrate impedance sensing.
    Qiu Y; Liao R; Zhang X
    Anal Chem; 2008 Feb; 80(4):990-6. PubMed ID: 18215019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogel-based diffusion chip with Electric Cell-substrate Impedance Sensing (ECIS) integration for cell viability assay and drug toxicity screening.
    Tran TB; Cho S; Min J
    Biosens Bioelectron; 2013 Dec; 50():453-9. PubMed ID: 23911660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.