These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 19356738)
1. Delivery of RNA interference therapeutics using polycation-based nanoparticles. Howard KA Adv Drug Deliv Rev; 2009 Jul; 61(9):710-20. PubMed ID: 19356738 [TBL] [Abstract][Full Text] [Related]
2. Polycation-based nanoparticle delivery of RNAi therapeutics: adverse effects and solutions. Ballarín-González B; Howard KA Adv Drug Deliv Rev; 2012 Dec; 64(15):1717-29. PubMed ID: 22800620 [TBL] [Abstract][Full Text] [Related]
3. Chitosan-based nanoparticles for mucosal delivery of RNAi therapeutics. Martirosyan A; Olesen MJ; Howard KA Adv Genet; 2014; 88():325-52. PubMed ID: 25409611 [TBL] [Abstract][Full Text] [Related]
4. Nonviral in vivo delivery of therapeutic small interfering RNAs. Aigner A Curr Opin Mol Ther; 2007 Aug; 9(4):345-52. PubMed ID: 17694447 [TBL] [Abstract][Full Text] [Related]
8. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Davis ME Mol Pharm; 2009; 6(3):659-68. PubMed ID: 19267452 [TBL] [Abstract][Full Text] [Related]
9. Controlling HBV replication in vivo by intravenous administration of triggered PEGylated siRNA-nanoparticles. Carmona S; Jorgensen MR; Kolli S; Crowther C; Salazar FH; Marion PL; Fujino M; Natori Y; Thanou M; Arbuthnot P; Miller AD Mol Pharm; 2009; 6(3):706-17. PubMed ID: 19159285 [TBL] [Abstract][Full Text] [Related]
10. In vivo delivery of RNAi with lipid-based nanoparticles. Huang L; Liu Y Annu Rev Biomed Eng; 2011 Aug; 13():507-30. PubMed ID: 21639780 [TBL] [Abstract][Full Text] [Related]
11. RNAi using a chitosan/siRNA nanoparticle system: in vitro and in vivo applications. Andersen MØ; Howard KA; Kjems J Methods Mol Biol; 2009; 555():77-86. PubMed ID: 19495689 [TBL] [Abstract][Full Text] [Related]
12. Polycation-based nanoparticles for RNAi-mediated cancer treatment. Ballarín-González B; Ebbesen MF; Howard KA Cancer Lett; 2014 Sep; 352(1):66-80. PubMed ID: 24139965 [TBL] [Abstract][Full Text] [Related]
13. The road to therapeutic RNA interference (RNAi): Tackling the 800 pound siRNA delivery gorilla. Meade BR; Dowdy SF Discov Med; 2009 Dec; 8(43):253-6. PubMed ID: 20040280 [TBL] [Abstract][Full Text] [Related]
15. Nonviral vector-mediated RNA interference: its gene silencing characteristics and important factors to achieve RNAi-based gene therapy. Takahashi Y; Nishikawa M; Takakura Y Adv Drug Deliv Rev; 2009 Jul; 61(9):760-6. PubMed ID: 19386274 [TBL] [Abstract][Full Text] [Related]
16. Polymer nanocarriers for the delivery of small fragments of nucleic acids: oligonucleotides and siRNA. de Martimprey H; Vauthier C; Malvy C; Couvreur P Eur J Pharm Biopharm; 2009 Mar; 71(3):490-504. PubMed ID: 18977435 [TBL] [Abstract][Full Text] [Related]
17. PAMAM dendrimers mediate siRNA delivery to target Hsp27 and produce potent antiproliferative effects on prostate cancer cells. Liu XX; Rocchi P; Qu FQ; Zheng SQ; Liang ZC; Gleave M; Iovanna J; Peng L ChemMedChem; 2009 Aug; 4(8):1302-10. PubMed ID: 19533723 [TBL] [Abstract][Full Text] [Related]
18. Cationic nanosystems for the delivery of small interfering ribonucleic acid therapeutics: a focus on toxicogenomics. Akhtar S Expert Opin Drug Metab Toxicol; 2010 Nov; 6(11):1347-62. PubMed ID: 20929276 [TBL] [Abstract][Full Text] [Related]
19. In vivo pharmacokinetics, tissue distribution and underlying mechanisms of various PEI(-PEG)/siRNA complexes. Malek A; Merkel O; Fink L; Czubayko F; Kissel T; Aigner A Toxicol Appl Pharmacol; 2009 Apr; 236(1):97-108. PubMed ID: 19371615 [TBL] [Abstract][Full Text] [Related]
20. RNA interference as an anticancer therapy: a patent perspective. Dykxhoorn DM Expert Opin Ther Pat; 2009 Apr; 19(4):475-91. PubMed ID: 19441927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]