BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 19356797)

  • 1. Macrophage-mediated erosion of gamma irradiated poly(trimethylene carbonate) films.
    Bat E; van Kooten TG; Feijen J; Grijpma DW
    Biomaterials; 2009 Aug; 30(22):3652-61. PubMed ID: 19356797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo behavior of trimethylene carbonate and ε-caprolactone-based (co)polymer networks: degradation and tissue response.
    Bat E; Plantinga JA; Harmsen MC; van Luyn MJ; Feijen J; Grijpma DW
    J Biomed Mater Res A; 2010 Dec; 95(3):940-9. PubMed ID: 20845496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic surface erosion of poly(trimethylene carbonate) films studied by atomic force microscopy.
    Zhang Z; Zou S; Vancso GJ; Grijpma DW; Feijen J
    Biomacromolecules; 2005; 6(6):3404-9. PubMed ID: 16283772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of poly(trimethylene carbonate) molecular weight on macrophage behavior and enzyme adsorption and conformation.
    Vyner MC; Li A; Amsden BG
    Biomaterials; 2014 Nov; 35(33):9041-8. PubMed ID: 25109440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resorbable elastomeric networks prepared by photocrosslinking of high-molecular-weight poly(trimethylene carbonate) with photoinitiators and poly(trimethylene carbonate) macromers as crosslinking aids.
    Bat E; van Kooten TG; Feijen J; Grijpma DW
    Acta Biomater; 2011 May; 7(5):1939-48. PubMed ID: 21232640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The in vivo and in vitro degradation behavior of poly(trimethylene carbonate).
    Zhang Z; Kuijer R; Bulstra SK; Grijpma DW; Feijen J
    Biomaterials; 2006 Mar; 27(9):1741-8. PubMed ID: 16221493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial membrane potential and reactive oxygen species content of endothelial and smooth muscle cells cultured on poly(epsilon-caprolactone) films.
    Serrano MC; Pagani R; Manzano M; Comas JV; Portolés MT
    Biomaterials; 2006 Sep; 27(27):4706-14. PubMed ID: 16730794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transitory oxidative stress in L929 fibroblasts cultured on poly(epsilon-caprolactone) films.
    Serrano MC; Pagani R; Peña J; Portolés MT
    Biomaterials; 2005 Oct; 26(29):5827-34. PubMed ID: 15949548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering.
    Wang F; Li Z; Lannutti JL; Wagner WR; Guan J
    Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing porosity and topography of poly(1,3-trimethylene carbonate) scaffolds.
    Papenburg BJ; Schüller-Ravoo S; Bolhuis-Versteeg LA; Hartsuiker L; Grijpma DW; Feijen J; Wessling M; Stamatialis D
    Acta Biomater; 2009 Nov; 5(9):3281-94. PubMed ID: 19463974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface properties and biocompatibility of solvent-cast poly[-caprolactone] films.
    Tang ZG; Black RA; Curran JM; Hunt JA; Rhodes NP; Williams DF
    Biomaterials; 2004 Aug; 25(19):4741-8. PubMed ID: 15120520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trimethylene carbonate and epsilon-caprolactone based (co)polymer networks: mechanical properties and enzymatic degradation.
    Bat E; Plantinga JA; Harmsen MC; van Luyn MJ; Zhang Z; Grijpma DW; Feijen J
    Biomacromolecules; 2008 Nov; 9(11):3208-15. PubMed ID: 18855440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid photocurable biodegradable copolymers: in vivo degradation of photocured poly(epsilon-caprolactone-co-trimethylene carbonate).
    Mizutani M; Matsuda T
    J Biomed Mater Res; 2002 Jul; 61(1):53-60. PubMed ID: 12001246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable elastomeric networks: highly efficient cross-linking of poly(trimethylene carbonate) by gamma irradiation in the presence of pentaerythritol triacrylate.
    Bat E; Feijen J; Grijpma DW
    Biomacromolecules; 2010 Oct; 11(10):2692-9. PubMed ID: 20839883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crosslinking of trimethylene carbonate and D, L-lactide (co-) polymers by gamma irradiation in the presence of pentaerythritol triacrylate.
    Bat E; van Kooten TG; Feijen J; Grijpma DW
    Macromol Biosci; 2011 Jul; 11(7):952-61. PubMed ID: 21480530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A surface-eroding poly(1,3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: toward better biofunction, biodegradation and biocompatibility.
    Wang J; He Y; Maitz MF; Collins B; Xiong K; Guo L; Yun Y; Wan G; Huang N
    Acta Biomater; 2013 Nov; 9(10):8678-89. PubMed ID: 23467041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical properties and erosion behavior of poly(trimethylene carbonate-co-ε-caprolactone) networks.
    Bat E; van Kooten TG; Harmsen MC; Plantinga JA; van Luyn MJ; Feijen J; Grijpma DW
    Macromol Biosci; 2013 May; 13(5):573-83. PubMed ID: 23427167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A surface-eroding antibiotic delivery system based on poly-(trimethylene carbonate).
    Kluin OS; van der Mei HC; Busscher HJ; Neut D
    Biomaterials; 2009 Sep; 30(27):4738-42. PubMed ID: 19500839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraocular degradation behavior of crosslinked and linear poly(trimethylene carbonate) and poly(D,L-lactic acid).
    Jansen J; Koopmans SA; Los LI; van der Worp RJ; Podt JG; Hooymans JM; Feijen J; Grijpma DW
    Biomaterials; 2011 Aug; 32(22):4994-5002. PubMed ID: 21507481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface functionalization of degradable polymers by covalent grafting.
    Källrot M; Edlund U; Albertsson AC
    Biomaterials; 2006 Mar; 27(9):1788-96. PubMed ID: 16257444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.