These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 19356925)

  • 1. The probable metabolic relation between phosphate uptake and energy storages formations under single-stage oxic condition.
    Wang DB; Li XM; Yang Q; Zheng W; Liu ZY; Liu YL; Cao JB; Yue X; Shen TT; Zeng GM; Deng JH
    Bioresour Technol; 2009 Sep; 100(17):4005-11. PubMed ID: 19356925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effects of two typical substrates as the sole carbon source on biological phosphorus removal with a single-stage oxic process].
    Liu YL; Wang DB; Li XM; Yang Q; Zou GL; Jia B; Zeng TJ; Ding Y; Zeng GM
    Huan Jing Ke Xue; 2010 Jan; 31(1):124-8. PubMed ID: 20329527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved biological phosphorus removal performance driven by the aerobic/extended-idle regime with propionate as the sole carbon source.
    Wang D; Li X; Yang Q; Zheng W; Wu Y; Zeng T; Zeng G
    Water Res; 2012 Aug; 46(12):3868-78. PubMed ID: 22609408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological phosphorus removal in anoxic-aerobic sequencing batch reactor with starch as sole carbon source.
    Luo D; Yuan L; Liu L; Chai L; Wang X
    Water Sci Technol; 2017 Jan; 75(1-2):28-38. PubMed ID: 28067643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological phosphorus removal in sequencing batch reactor with single-stage oxic process.
    Wang DB; Li XM; Yang Q; Zeng GM; Liao DX; Zhang J
    Bioresour Technol; 2008 Sep; 99(13):5466-73. PubMed ID: 18082396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate uptake and release rates with different carbon sources in biological nutrient removal using a SBR.
    Kargi F; Uygur A; Başkaya HS
    J Environ Manage; 2005 Jul; 76(1):71-5. PubMed ID: 15854738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparison study on phosphorus removal between single-stage oxic process and anaerobic/aerobic process].
    Yang F; Wang DB; Li XM; Yang Q; Deng Y; Luo K; Zou ZJ; Zeng TJ; Deng P
    Huan Jing Ke Xue; 2011 Nov; 32(11):3379-85. PubMed ID: 22295638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling and calibration of phosphate and glycogen accumulating organism competition for acetate uptake in a sequencing batch reactor.
    Yagci N; Insel G; Artan N; Orhon D
    Water Sci Technol; 2004; 50(6):241-50. PubMed ID: 15537013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic influence of lead on polyhydroxyalkanoates (PHA) production and phosphate uptake in activated sludge fed with glucose or acetic acid as carbon source.
    You SJ; Tsai YP; Cho BC; Chou YH
    Bioresour Technol; 2011 Sep; 102(17):8165-70. PubMed ID: 21704513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous storage and utilization of polyhydroxyalkanoates and glycogen under aerobic conditions.
    Karahan O; Orhon D; van Loosdrecht MC
    Water Sci Technol; 2008; 58(4):945-51. PubMed ID: 18776634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic metabolism of Defluviicoccus vanus related glycogen accumulating organisms (GAOs) with acetate and propionate as carbon sources.
    Dai Y; Yuan Z; Wang X; Oehmen A; Keller J
    Water Res; 2007 May; 41(9):1885-96. PubMed ID: 17368713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic model for acetate uptake by a mixed culture of phosphate- and glycogen-accumulating organisms under anaerobic conditions.
    Yagci N; Artan N; Cokgör EU; Randall CW; Orhon D
    Biotechnol Bioeng; 2003 Nov; 84(3):359-73. PubMed ID: 12968290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excess nitrogen accumulation in activated sludge in sequencing batch reactor with a single-stage oxic process.
    Li XM; Wang DB; Yang Q; Zheng W; Cao JB; Yue X; Shen TT; Zeng GM; Deng JH
    Water Sci Technol; 2009; 59(3):573-82. PubMed ID: 19214013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-based data evaluation of polyhydroxybutyrate producing mixed microbial cultures in aerobic sequencing batch and fed-batch reactors.
    Johnson K; Kleerebezem R; van Loosdrecht MC
    Biotechnol Bioeng; 2009 Sep; 104(1):50-67. PubMed ID: 19472301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)?
    Zhou Y; Pijuan M; Zeng RJ; Lu H; Yuan Z
    Water Res; 2008 May; 42(10-11):2361-8. PubMed ID: 18222522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous metabolism of Candidatus Accumulibacter phosphatis under various starvation conditions.
    Lu H; Keller J; Yuan Z
    Water Res; 2007 Dec; 41(20):4646-56. PubMed ID: 17658580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The utilization of glycogen accumulating organisms for mixed culture production of polyhydroxyalkanoates.
    Bengtsson S
    Biotechnol Bioeng; 2009 Nov; 104(4):698-708. PubMed ID: 19530079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Denitrifying phosphorus removal: linking the process performance with the microbial community structure.
    Carvalho G; Lemos PC; Oehmen A; Reis MA
    Water Res; 2007 Nov; 41(19):4383-96. PubMed ID: 17669460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioenergetic models for acetate and phosphate transport in bacteria important in enhanced biological phosphorus removal.
    Burow LC; Mabbett AN; McEwan AG; Bond PL; Blackall LL
    Environ Microbiol; 2008 Jan; 10(1):87-98. PubMed ID: 18211269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the aerobic metabolism of polyphosphate-accumulating organisms enriched with propionate as a carbon source.
    Oehmen A; Zeng RJ; Keller J; Yuan Z
    Water Environ Res; 2007 Dec; 79(13):2477-86. PubMed ID: 18198693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.